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1. Introduction

This paper explores physician-nurse interactions in emergency rooms using
Centipede Game Theory, a sequential decision-making model. The game
illustrates how trust and institutional factors influence cooperation under high-
stakes conditions. Participants alternate between cooperating, which increases
cumulative rewards, and defecting, which ends the interaction for immediate
personal gain. We introduce a trust-sensitive version of the model, featuring a
logistic cooperation probability function, PC (t), driven by trust cap (0),
sensitivity (1), and inflection point (t0). The expected utility function, EUC (t),
captures outcomes across ten stages. Using values 6 = 1.2, a.= 0.6, and 6 = 0.8,
results show cooperation probability rising from 0.095 at stage 1 to 0.74 at
stage 10, and EUC (t) increasing from 0.50 to 3.39. The findings underscore
how trust and institutional support like joint training and standardized
protocols can shift strategic behavior from early defection to sustained
collaboration. This research demonstrates the value of game-theoretic
approaches for improving teamwork and patient outcomes in critical healthcare
environments.

decision-making through comparative effectiveness
research (Chalkidou et al., 2009). Decision-making is a

Decision-making in high-stakes clinical environments
such as emergency rooms (ERSs) often involve dynamic
interactions between multiple healthcare professionals.
Physicians and nurses must collaborate under time-
sensitive and uncertain conditions to deliver optimal
patient care. The efficiency and effectiveness of such
collaboration are deeply influenced by institutional
hierarchies, communication dynamics, trust levels, and
incentive structures (Manojlovich & DeCicco, 2007;
Zwarenstein et al., 2009). Enhancing the efficiency,
guality, and long-term sustainability of the U.S. health
care system is placing growing emphasis on the
importance of generating stronger evidence for

fundamental aspect of daily human life. Since people
make decisions of varying significance every day, the
notion that decision-making can be challenging might
appear unusual or even hard to believe (Li, 2008).

Among various game-theoretic models, the Centipede
Game offers a compelling lens for understanding
sequential decisions where players choose at each stage
whether to cooperate or defect, with payoffs increasing
the longer cooperation continues. Rosenthal (1981)
paper argued that finite, noncooperative games with
complete and perfect information should be analyzed
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similarly  to  singleplayer  decision  problems.
Specifically, it suggested that at each stage of the game,
players should assign subjective probabilities to future
actions and make choices through backward induction.
This perspective differs from the traditional game-
theoretic framework based on Nash equilibrium. This
structure mirrors real-world ER scenarios in which
physicians and nurses must decide whether to continue
collaborative patient management or act independently;
often with differing short- and long-term consequences.

Okeke (2019) [6] work demonstrated the analytic of the
convergence of an iterative sequence defined by a
generalized Lipschitzian map on a cone metric space.
Several studies have employed analytical methods
alongside software tools such as SPSS and MATLAB
for the analysis and interpretation of modelling results.
For example, Okeke ([7]), Okeke & Akpan ([8]), and
Okeke & Ifeoma ([9], [10]) examined various modelling
approaches applied to physical phenomena and the
sensitivity of coronavirus disparities in Nigeria. Okeke
et al. (2019) [11] utilized analytical theorems, including
the fixed point theorem. Okeke & Peters (2019) [12]
emphasized numerical stability in physical flow
applications using Software-assisted analysis tool
(Okeke & Nwokolo, 2025 [13]). The principle of
maximum was analytically applied to establish the
uniqueness of solutions in metric spaces involving
second-order linear Volterra integral equations.

Classical backward induction in game theory predicts
early defection, as rational players attempt to maximize
their individual payoffs by ending cooperation before
their partner does. However, empirical studies have
shown that real human behavior often deviates from this
theoretical prediction, with sustained cooperation
observed even in competitive environments (McKelvey
& Palfrey, 1992; Johnson et al., 2002).

Trust emerges as a critical determinant in such
deviations. In healthcare, trust not only enhances
interprofessional communication but also directly
correlates with improved patient outcomes (Hall et al.,
2001). Yet, trust is neither static nor binary; it evolves
over time and is sensitive to prior interactions,
institutional culture, and perceived competence. To
capture this dynamic quality, recent research integrates
probabilistic trust functions into game-theoretic models,
allowing for a more realistic representation of human
decision-making over repeated interactions (Bacharach
et al., 2007; Kimbrough & Vostroknutov, 2016).

This study introduces a modified Centipede Game
framework tailored to emergency room dynamics,
incorporating a logistic trust-based cooperation
probability function. By applying a ten-stage sequential
interaction model between a physician and a nurse, we
examine how trust development influences strategic
decisions at each stage. Parameters such as a
collaboration multiplier (8), trust cap (0), and
experience-based inflection  point  (t0)  are
mathematically modeled to simulate cooperation
probability and expected utility. The outcomes illustrate
how cooperation, though theoretically suboptimal in
early stages, becomes increasingly dominant as trust
builds, resulting in higher cumulative benefits for
patient care.

Moreover, this modeling framework supports practical
implications. By quantifying the conditions under which
cooperation becomes the dominant strategy, it provides
a rigorous basis for designing interventions such as
team-based training, incentive alignment, and
institutional protocol redesign that can shift ER
dynamics toward more collaborative equilibria. Thus,
mathematical game models, when integrated with
behavioral and institutional parameters, offer powerful
tools for understanding and improving the complex
decision systems that underpin emergency healthcare
delivery.

2. Review of Related Works

Understanding decision-making dynamics in high-
pressure healthcare environments has long been a focus
of interdisciplinary research, especially in emergency
room (ER) settings where rapid, cooperative actions are
essential. The application of game theory to healthcare
has grown in prominence over the past two decades,
providing a structured approach to analyze strategic
interactions among professionals with potentially
conflicting objectives. Early work by Levati et al.
(2007) used experimental game theory to investigate
trust and reciprocity in repeated interactions, laying the
groundwork  for  modeling  cooperation  under
uncertainty.

In the context of healthcare, authors have explored
various game-theoretic frameworks to analyze
coordination problems. For instance, Liu et al. (2016)
applied evolutionary game theory to understand the
cooperation between hospitals and patients under
insurance incentives, while Zhang and Zhang (2020)
examined Stackelberg games to optimize hospital
resource allocation. However, few studies have
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addressed physician-nurse interactions specifically,
despite their centrality in ER operations. These
interactions often involve real-time decisions that
require mutual trust and aligned incentives, making
them well-suited for dynamic game-theoretic modeling.

The Centipede Game, introduced by Rosenthal (1981),
provides a sequential framework for studying such
trust-based decisions. It has been used to model
cooperation in economics (McKelvey & Palfrey, 1992),
behavioral psychology (Andreoni & Miller, 1993), and
political science, but its application to healthcare team
dynamics remains novel. In its standard form, the
Centipede Game predicts early defection as the rational
equilibrium, yet empirical evidence often shows
sustained cooperation, particularly in repeated or
institutionalized contexts. This divergence has prompted
modifications incorporating bounded rationality,
reputation effects, and, more recently, trust dynamics
(Charness & Rabin, 2002).

Our work builds on these insights by integrating a
logistic trust function into the Centipede framework, an
approach that echoes methods in dynamic behavioral
modeling (Fehr & Schmidt, 1999). By doing so, we
reflect the evolving nature of trust in real-world clinical
interactions, which are influenced by systemic factors
like team training, shared protocols, and prior
experiences (Reader et al., 2009). Studies in healthcare
management also suggest that trust is not only
interpersonal but deeply embedded in institutional
practices (Weiner et al., 2008), reinforcing the
importance of capturing both individual and systemic
variables.

Furthermore, research on interprofessional collaboration
in ERs emphasizes the impact of communication,
hierarchy, and shared mental models on team
performance (Manser, 2009; Kilner & Sheppard, 2010).
These insights align with our model’s emphasis on how
structural trust such as collaborative routines can shift
strategic equilibria toward cooperation. Although
simulation-based studies have shown that team training
can reduce medical errors and enhance coordination
(Salas et al., 2008), a rigorous mathematical treatment
of these dynamics remains underdeveloped. Our
contribution addresses this gap by quantifying the effect
of trust dynamics on cooperation over time in ER
settings.

In summary, while existing literature has established the
relevance of game theory, trust, and team dynamics in

healthcare, our model uniquely combines these
elements in a formal Centipede Game framework,
providing a novel lens through which to examine and
optimize real-time clinical decision-making.

This study strategically apply mathematical exploration
using centipede game theory to solve problems related
to emergency room interactions between the hospital
workers such as physiciannurse. The objectives of this
study include: to examine how trust and institutional
factors influence cooperative behavior during high-
stakes clinical decision-making; to determine the
logistic cooperation probability function PC (t) that
evolves with time and parameters such as trust cap 9,
sensitivity A, and inflection point t0; to study the
expected utility function EUC (t) that integrates both
cooperative and non-cooperative outcomes over ten
stages; to plot the defective payoffs for both the
physician and the nurse over the stages t = 1 to t = 10,
assuming 6 = 1.2, a. = 0.6, and 6 = 0.8; and to show that
while classical game theory predicts early defection,
introducing trust-based probability functions and
collaborative incentive structures can alter the
equilibrium and promote sustained cooperation between
physicians and nurses in emergency settings.

3. Methodology

The example of a Centipede theory Structure is given in
the Figure 1 below. The Figure 1 illustrates a 10-stage
centipede game modeled within a healthcare context,
involving two hospitals, Hospital A and Hospital B. At
each stage, the hospital whose turn it is must decide
whether to Take — ending the cooperation to secure an
immediate individual benefit — or Pass, allowing the
collaboration to continue and potentially yield greater
joint benefits. The payoffs at each terminal node show
the distribution of benefits to both hospitals, with the
first number representing Hospital A’s payoff and the
second Hospital B’s.

As the game progresses, the potential rewards for
cooperation increase, encouraging both hospitals to
continue passing and collaborating. For example, early
Take actions yield modest benefits like (2,1) or (1,3),
while later cooperation can lead to higher payoffs such
as (9,11). However, the temptation to defect and take
the guaranteed immediate payoff is always present,
representing the tension between short-term self-interest
and long-term mutual gain.

This model reflects real-world healthcare decisions
where hospitals must decide whether to share patient
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data, research findings, or resources. Cooperation can
lead to improved patient outcomes and cost efficiencies,
but distrust or fear of exploitation may cause premature
withdrawal. Thus, the diagram highlights the strategic
decision-making and risks inherent in collaborative
healthcare partnerships. It emphasizes the importance of
trust and the challenges in achieving sustained coop-
eration despite the potential for higher collective
benefits.

This section also detailed Players, Game Structure and
Payoff Function. Let there be two players:

i. P1: Physician
ii. P2 : Nurse

Assumption: They alternate turns to cooperate (C) or
defect (D).

The game consists of n stages (decision points). At each
staget € {1, 2, . .., n}, the player whose turn it is
chooses either:

i. C (Continue): Pass the decision to the next
player and increase the total payoff.

ii. D (Defect): End the game and receive an
immediate payoff. Where:

Table 1: The payoff structure, at stage t, 6 > 1 and a,
pe(0,1)

Choicel(C) v, v =5 - a,8" - (1 - w)

t
Choice2(D) v, v =5 B8 - (1 - P)

i. o=Ll:trustmultiplierorcollaborationgrowth rate
ii. o,€(0,1):proportionsofpayoffsplitdependingoncoop
erationordefection

3.1 Backward Induction (Subgame Perfect Nash
Equilibrium), Modified Trust-Based Model and
Expected Utility with Trust Factor

Using backward induction and following the Broome
and Rabinowicz (1999), the rational strategy under
classical game theory is:

Att=n : player defects to maximize payoff
Att=n-1 :anticipating defection, the previous player
also defects

= Both players defect early (t = 1), resulting in
suboptimal outcomes

The logistic growth function was introduced in a
biological context by Pierre Fran, cois Verhulst in the

1830s containd in work of Miner (1933) when studying
population dynamics. The general form representing the
logistic growth is:

O ==y €Y
Where:
i. L is the carrying capacity (maximum value),
ii. k is the growth rate,
iii. t0 is the midpoint (inflection point),
iv. f(t) is the population or adoption level at time

t.

This equation is widely used across many disciplines
such as in population growth, epidemiology (disease
spread), neural networks (activation function),
economics (adoption of innovations), physics (phase
transitions) and sociology (information diffusion).

3.2 Definitions of Terms
i. Trust Cap, 0 € (0, 1]: ~
e  The maximum achievable level of cooperation
under ideal circumstances. ”
o  Represents the upper bound of the probability
that an individual or agent will cooperate. ~
e A value of 6 = 1 implies full trust is
theoretically attainable, while lower values
reflect systemic or structural limits to
cooperation, even under favorable conditions.

ii. Sensitivity to Time or Experience, A:

e  Controls the rate at which cooperation increases
over time. ”

e A higher A implies that cooperation ramps up
quickly with experience or exposure, indicating
a highly responsive system.

e A lower A results in a slower growth,
suggesting that cooperation develops more
gradually due to slower learning or institutional
inertia.

iii. Inflection Point, to; ©
e  The critical threshold or milestone at which the
rate of change in cooperation is highest.
e Represents a turning point in experience or
institutional development—such as completing
a training program, reaching a policy milestone,
or hitting a critical mass of exposure.
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o  Before to, cooperation increases slowly; after to,
it accelerates, then gradually levels off toward
0.
To incorporate trust and institutional protocols,
we define a cooperation probability function
from equation (1) as:

P = 0 2
c(t)—m 2

Where:

i. rust cap, 0 € (0, 1]

. Sensitivity to time or experience, A

iii. Inflection point (e.g., training milestone or
experience threshold), to

The graph of P:(t) =
shaped) curve used to model growth or transition
processes. It starts near zero for very negative t,
increases gradually, and sharply rises around the
inflection point t = to, where the growth rate is maximal.
As t increases further, the function levels off and
asymptotically approaches the horizontal line y = 0,
representing the maximum value.

The curve is symmetric about t = to, and the value at

Tre- (=t is a sigmoid (S-

the inflection point is g .

In mathematical exploration of the centipede game
theory applied to emergency room (ER) interactions,

the function Pc(t) =

probability of cooperation between medical personnel
over time. The sigmoid shape reflects how initial
hesitation or mistrust (low t) gives way to rapid trust-
building and collaboration as critical decisions arise
near t = to, the inflection point. As time progresses and
mutual benefits are recognized, cooperation stabilizes
near 0, the maximum sustainable level. This aligns with
game-theoretic predictions of increasing cooperation
when future payoffs outweigh immediate self-interest.

Py represent the

Let the expected utility of cooperating at stage t be:
EUc(t) = P (1) - 8" -+ (1 —pc (1) -
v (3)

Players will choose to cooperate if:

EUc(t) > vgl) = trust modifies the equilibrium

Where:

i. EUC (t) is the expected utility at time t; it reflects
the weighted average of outcomes when a player
decides to cooperate,

ii. PC (t) is the probability that event C occurs at
time t,

iii. O tis the discount factor applied over time t,

iv.  a is the utility received if event C occurs, v. v (1)
t is the utility in the alternative scenario when
event C does not occur.

3.3 Background Assumption

We are analyzing decision-making in a repeated game

setting (such as the Centipede Game), where at each

stage t, a player decides whether to:

i. Cooperate (trust the other player or institution),
or

ii. Defect (act independently based on personal
expected value).

Incorporating trust and institutional learning into the
model means that the decision to cooperate is not
deterministic, but instead depends on some probability
of cooperation, PC (t), which evolves over time.

3.4 Defining Expected Utility of Cooperation, EU¢(t)

We assume:

i. A player cooperates at time t with probability
Pc(t).

ii. If cooperation succeeds, the player gains a
discounted future payoff, represented by &"a,
where:

iii. d: Time discount factor (future rewards are worth
less).

iv. a: Reward from successful cooperation (e.g.,
payoff from joint action).

V. If cooperation fails, the player receives a fallback
or default utility, v , which is the payoff from
unilateral action.

Thus, the expected utility of cooperation is given by:
(€Y]

EU.(t) =P.(t) -8t a + (1-p.®)-(1-PC®).v 4

Fallback utility if cooperation fails

Expected gain from cooperation

This is a probabilistic utility function that captures both
trust and the reward structure.

3.5 Decision Rule: When Do Players Cooperate?
A rational player will choose to cooperate only if the
expected utility from cooperating exceeds the utility
from defecting:

EUc(t) > VP 5
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Substituting EUc (t): Thus:
pc().8 - a + (1—p.(t)) v >y EUc(t) > vi? = trust modifies the equilibrium
pc(t)_(gf. a—vt(l)) >0 This is especially relevant in institutional or

organizational settings where cooperation is learned or

So, cooperation is favorable only when the discounted X . .
P y built over time (e.g., teams, hospitals, governments).

cooperative payoff exceeds the fallback payoff:

8 a—v” 6 This structural formula is prevalent in several
and only to the extent that Pc (t) > 0; meaning trust disciplines like behavioral economics and decision
modulates when this inequality holds. theory; models of intertemporal choice and prospect
theory often use similar formulations; computational
3.6 Trust Modifies the Equilibrium neuroscience and reinforcement learning; decision-
In this model: making under uncertainty and over time is modeled.
i.  The presence of a dynamic trust function PC (t), This has contributed meaningfully to the area; health
which increases over time or with institutional economics and risk analysis; treatment decisions over
investment, shifts the equilibrium. time with uncertain outcomes.

ii. Trust does not just reflect willingness to
cooperate; it quantitatively alters the expected
utility.

4. Results

This section shows the computation of & t at early stages and computation of coorperation probabilities, P¢ (t).

4.1 Computation of 6 t at Early Stages
Given the trust multiplier, 6 = 1.1, then, the exponential growth of cooperation benefits at each stage t is computed as
follows:

Table 2: The summary of the computed values oftrust multiplier, 6 = 1.1 for each stage t from 1 to 10
Stage,t 1 2 3 4 5 6 7 8 0 10
st 11 121 |1.331 [1.4641 [1.61051 [1.77156  [1.94872 [2.14359 [2.35795 [2.59374

4.2 Computation of Cooperation Probabilities Pc(t) :

0=0.95,1=0.6,t =2.573
The following table summarizes the computed values of PC (t) for each stage t from 1 to 10. This table shows how the
cooperation probability increases with each stage t, reflecting the growing trust as the interaction progresses.

Table 3: The summary of the computed values of PC (t) for each stage t from 1 to 10

Stage,t 1 2 3 4 5 6 7 8 0 10
Pc(t) 0.266 0.394 0.536 0.667 0.770  |0.842 0.888 0915 0930  |0.939
We calculate the cooperative payoff for each stage t.

Table 4: Cooperative Payoff Table for t=1tot=10,6=1.2, a =0.6

Stage ,t Physician’s Payoff U= "« Nurses Payoff U= 6"(1-a)
1 0.72 0.48
2 0.864 0.576
3 1.037 0.691
) 1.244 0.829
5 1.493 0.995
6 1.792 1.194
7 2.150 1.433
8 2.580 1.720
9 3.096 2.064
10 3.715 2.477
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The Figure 3 below represents a 10-stage centipede game between two healthcare professionals: a Physician and a
Nurse. Each stage models a decision point where the current player chooses either to Take the payoff immediately or
Pass the opportunity to the other player, potentially increasing the joint benefits. The payoffs are based on the
cooperative payoff table, calculated using the parameters 6=1.2 and a = 0.6 which reflect the growth factor and payoff
distribution between the Physician and Nurse, respectively.

At early stages, the payoffs are relatively small, with the Physician receiving 0.72 and the Nurse 0.48 at stage 1. As the
game progresses, the payoffs grow exponentially, reaching 3.715 for the Physician and 2.477 for the Nurse by stage 10.
This increase incentivizes players to continue cooperating by passing their turn rather than taking the immediate payoff.
The game captures the tension between short-term self-interest and long-term collaboration in healthcare settings, such
as shared patient care or research. Both players must weigh the benefits of continuing cooperation against the risk of the
other party defecting. The structure emphasizes the importance of trust and strategic decision-making in achieving
optimal outcomes. Ultimately, the centipede game highlights how cooperation can yield greater collective benefits but
requires patience and confidence in the other player’s commitment.

Next, we calculate the Expected Utility with Trust Factor for each stage t = 1 to t = 10, assuming the following
parameters. The expected utility is given by:

EUc(t) = Pc(t) - 8"+ o+ (1 — pe () - vV

where - VEl) =3 B

Table 5: Expected Utility Table fort=1tot=10,6=1.2,0=0.6,0 =0.8, A=0.5,tc =5

Staget Pc(t) ) EUc(t) [ Nature of Trust[EUc()>v""]
1 0.09536 0.48 0.50289 Equilibrium
2 0.14594 0.576 0.61803 Equilibrium
3 0.21515 0.6912 0.76556 Equilibrium
4 0.30203 0.829 0.95440 Equilibrium
5 0.40000 0.995 1.19420 Equilibrium
6 0.49797 1.194 1.49158 Equilibrium
7 0.58485 1.433 1.85228 Equilibrium
8 0.65406 1.720 2.28242 Equilibrium
9 0.70464 2.064 2.79110 Equilibrium
10 0.73931 2477 3.39230 Equilibrium

We will plot the cooperative payoffs for both the physician and the nurse over the stages t =1 to t = 10, assuming 6 = 1.2
and a = 0.6.

The cooperative payoffs are given by:

WP uP) =58 0,8" (1 - a)

The graph in Figure 4 displays the cooperative payoffs for both the physician and the nurse over 10 stages. The blue
curve represents the physician’s increasing payoff, while the red curve shows the nurse’s payoff. As the stages progress,
both payoffs grow exponentially due to the trust multiplier o.

4.3 Graphs of P (t), vt(l) ,and EU¢(t)

The graphs illustrate a continuous increase in cooperation probability P, (t), value vt(l), and expected utility EU¢(t)
from stages 1 to 10. As trust builds over time, P (t) rises sigmoidally, enhancing EU.(t), which consistently outpaces

the base value vV,

This table shows how the cooperation probability increases with each stage t, reflecting the growing trust as the
interaction progresses.
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Table 6: Simulated Values for Centipede Game Stages (Trust-Based Model) 6 = 0.95, o.= 0.6, = 0.8, A= 0.6, t0 =

2.573
Staget |t Pc(t)  [Foop. Payoff(u™,uy’)  |Def. Payoff 5\,(1),\,(2) EUc(t) |Nature of Trust
t

1 1.100 0.26613 |(0.660,0.440) (0.880,0.220) 0.82145 |No equilibrium
2 1.210 0.39414 |(0.726,0.484) (0.968,0.242) 0.87262 |No equilibrium
3 1.331 0.53552 |(0.7986,0.5324) (1.0648,0.2662) 0.92224 |No equilibrium
4 1.4641 0.66677 |(0.87846,0.58564) (1.17128,0.29282) 0.9760 No equilibrium
5 1.61051 |0.77040 |(0.96631,0.64420) (1.28841,0.32210) 1.04026 |No equilibrium
6 1.77156 |0.84224 |(1.06294,0.70862) (1.417249,0.35431) 1.11883 |No equilibrium
7 1.94871 |0.88767 |(1.16923,0.77949) (1.55900,0.38974) 1.21301 |No equilibrium
8 2.14359 0.91475 |(1.28615,0.85744) (1.714871,0.42872) 1.32270 |No equilibrium
9 2.35795 |0.93032 |(1.41477,0.94318) (1.88636,0.471590) 1.44763 |No equilibrium
10 2.59374 0.93910 |(1.55625,1.03750) (2.07500,0.51875) 1.58784 |No equilibrium

The Centipede Game theory Figure 7 illustrates a
sequential, trust-based interaction between two players
over 10 decision-making stages. Each node represents a
stage where a player can choose to either cooperate (C)
and pass the decision to the next stage, or defect (D) and
terminate the game, claiming the current payoff. The
game begins at Stage 1 and proceeds rightward,
alternating decision points between players. At each
stage, the players face the dilemma of trusting the
opponent for potentially higher joint payoffs by
continuing, or defecting early for immediate personal
gain.

The payoffs increase with each cooperative move,
reflecting a growing benefit of mutual trust, but also a
rising temptation to defect. For example, by Stage 10,
the cooperative payoff is (1.56, 1.04) while the
defection payoff is (2.08, 0.52), illustrating the
imbalance favoring early defection.

However, the absence of equilibrium in all stages
indicates persistent strategic tension, with no stable
outcome that both players would choose unilaterally.
The diagram captures the essence of trust evolution and
decision-making  dynamics  under  uncertainty,
emphasizing the potential breakdown of cooperation
despite mutual gains. It serves as a visual tool to
analyze rational behavior in iterated games.

Next, we plot the defective payoffs shown in Figure 8
for both the physician and the nurse over the stages t =
1 tot=10, assuming d = 1.1 and B = 0.8.

The defective payoffs are given by:

P vy =55, (1-p))

5. Conclusion

This model shows that while classical game theory
predicts early defection, introducing trust-based
probability functions and collaborative incentive
structures can alter the equilibrium and promote
sustained cooperation between physicians and nurses in
emergency settings. The gap between the Physician’s
and Nurse’s payoffs widens progressively with each
stage. This suggests a growing disparity in rewards or
benefits over time.

The term defective imply reduced or constrained
payoffs due to inefficiencies, misaligned incentives, or
systemic issues. Despite this, the Physician’s defective
payoff still outpaces the Nurse’s, possibly highlighting
inequities in compensation or recognition in the system.
The graph visually demonstrates inequality in growth
trajectories between two professional roles in a
healthcare setting. It raises questions about fairness,
incentive design, and long-term sustainability of such
payoff structures. The exponential nature of the curves
also suggests that small differences in growth rates can
lead to significant disparities over time, warranting
strategic adjustments if equity is a goal.
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Theorem 1 (Trust-Modified Equilibrium in Repeated
Games). Let

EUc(t) = Pc () - 8" a+ (1—pc (D) - vi”

denote the expected utility of cooperating at stage t in a
repeated game, where:
e Pq(t) € [0, 1] is the time-dependent probability
of successful cooperation (trust),
e 3 >0 is the discount factor for future rewards, ~
e o> 0 is the payoff from successful cooperation,
e v, (1)is the utility from unilateral (non-
cooperative) action at stage t.

Then:
EUc(t) > VEl) S p(t). (St- o— vt(l)) >0

Therefore, cooperation becomes a rational strategy if

and only if

®

8 - a>v,” and p.(t) > 0.

This implies that:

The existence and evolution of trust, represented by
pc(t), quantitatively shifts the game’s equilibrium—
rendering cooperation optimal in scenarios where it
would not be in the absence of trust.

Corollary 1 (Threshold for Rational Cooperation).
Define the trust threshold for rational cooperation as:
_ €)

RE(O) = 5
Then cooperation is rational only if

pe(t) > PE (D)
Proof. From the main theorem, we know that
cooperation is rational if and only if:

EUc(b) > Vgl) S pc(t).(ﬁt- (x—vt(l)) >0

Case 1: Suppose &° - o — v . Then the term
(St Co— vt(l)) > 0, and to preserve the inequality, we

must have:
p(t) >0

We isolate p.(t) explicitly:
@

pe®). (8" a=v(")>0 = p(t) >

This defines the minimum trust threshold:
(1

. Vt
0=

Case 2: Suppose 8° - o < vt(l) . Then the term
(St - - vt(l)) < 0, and the left-hand side becomes:

pc(t).(ﬁt - a —Vt(l)) <0

Thus:
EUc(t) < v
and cooperation is not rational in this case. The
inequality
(€Y

t
pc(t) > .

has no valid solution because the right-hand side is
greater than or equal to 1, while p.(t) < 1.

Conclusion: Cooperation is rational if and only if:

®
t

v
W and pc(t) > =
6. a

8 - a> v,
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which completes the proof.
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Figure 1: A 10-stage Centipede Game modeling cooperation decisions between two hospitals in healthcare.
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Figure 2: Graph of the sigmoid function P:(t) =
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Figure 4: Cooperative Payoffs of Physician and Nurse over 10 stages
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Figure 5: Graph of Cooperation Probability, Value, and Expected Utility
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Figure 3: 10-stage Centipede Game in Healthcare: Payoffs for Physician and Nurse at each stage.
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Figure 7: Centipede Game Tree for 10 Stages
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Figure 8: Defective Payoffs of Physician and Nurse over 10 stages
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