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This paper explores physician-nurse interactions in emergency rooms using 

Centipede Game Theory, a sequential decision-making model. The game 

illustrates how trust and institutional factors influence cooperation under high-

stakes conditions. Participants alternate between cooperating, which increases 

cumulative rewards, and defecting, which ends the interaction for immediate 

personal gain. We introduce a trust-sensitive version of the model, featuring a 

logistic cooperation probability function, PC (t), driven by trust cap (θ), 

sensitivity (λ), and inflection point (t0). The expected utility function, EUC (t), 

captures outcomes across ten stages. Using values δ = 1.2, α = 0.6, and θ = 0.8, 

results show cooperation probability rising from 0.095 at stage 1 to 0.74 at 

stage 10, and EUC (t) increasing from 0.50 to 3.39. The findings underscore 

how trust and institutional support like joint training and standardized 

protocols can shift strategic behavior from early defection to sustained 

collaboration. This research demonstrates the value of game-theoretic 

approaches for improving teamwork and patient outcomes in critical healthcare 

environments. 
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emergency care, Physician–
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1. Introduction  

Decision-making in high-stakes clinical environments 

such as emergency rooms (ERs) often involve dynamic 

interactions between multiple healthcare professionals. 

Physicians and nurses must collaborate under time-

sensitive and uncertain conditions to deliver optimal 

patient care. The efficiency and effectiveness of such 

collaboration are deeply influenced by institutional 

hierarchies, communication dynamics, trust levels, and 

incentive structures (Manojlovich & DeCicco, 2007; 

Zwarenstein et al., 2009). Enhancing the efficiency, 

quality, and long-term sustainability of the U.S. health 

care system is placing growing emphasis on the 

importance of generating stronger evidence for 

decision-making through comparative effectiveness 

research (Chalkidou et al., 2009). Decision-making is a 

fundamental aspect of daily human life. Since people 

make decisions of varying significance every day, the 

notion that decision-making can be challenging might 

appear unusual or even hard to believe (Li, 2008). 

 

Among various game-theoretic models, the Centipede 

Game offers a compelling lens for understanding 

sequential decisions where players choose at each stage 

whether to cooperate or defect, with payoffs increasing 

the longer cooperation continues. Rosenthal (1981) 

paper argued that finite, noncooperative games with 

complete and perfect information should be analyzed 
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similarly to singleplayer decision problems. 

Specifically, it suggested that at each stage of the game, 

players should assign subjective probabilities to future 

actions and make choices through backward induction. 

This perspective differs from the traditional game-

theoretic framework based on Nash equilibrium. This 

structure mirrors real-world ER scenarios in which 

physicians and nurses must decide whether to continue 

collaborative patient management or act independently; 

often with differing short- and long-term consequences. 

Okeke (2019) [6] work demonstrated the analytic of the 

convergence of an iterative sequence defined by a 

generalized Lipschitzian map on a cone metric space. 

Several studies have employed analytical methods 

alongside software tools such as SPSS and MATLAB 

for the analysis and interpretation of modelling results. 

For example, Okeke ([7]), Okeke & Akpan ([8]), and 

Okeke & Ifeoma ([9], [10]) examined various modelling 

approaches applied to physical phenomena and the 

sensitivity of coronavirus disparities in Nigeria. Okeke 

et al. (2019) [11] utilized analytical theorems, including 

the fixed point theorem. Okeke & Peters (2019) [12] 

emphasized numerical stability in physical flow 

applications using Software-assisted analysis tool 

(Okeke & Nwokolo, 2025 [13]). The principle of 

maximum was analytically applied to establish the 

uniqueness of solutions in metric spaces involving 

second-order linear Volterra integral equations. 

Classical backward induction in game theory predicts 

early defection, as rational players attempt to maximize 

their individual payoffs by ending cooperation before 

their partner does. However, empirical studies have 

shown that real human behavior often deviates from this 

theoretical prediction, with sustained cooperation 

observed even in competitive environments (McKelvey 

& Palfrey, 1992; Johnson et al., 2002). 

Trust emerges as a critical determinant in such 

deviations. In healthcare, trust not only enhances 

interprofessional communication but also directly 

correlates with improved patient outcomes (Hall et al., 

2001). Yet, trust is neither static nor binary; it evolves 

over time and is sensitive to prior interactions, 

institutional culture, and perceived competence. To 

capture this dynamic quality, recent research integrates 

probabilistic trust functions into game-theoretic models, 

allowing for a more realistic representation of human 

decision-making over repeated interactions (Bacharach 

et al., 2007; Kimbrough & Vostroknutov, 2016).  

This study introduces a modified Centipede Game 

framework tailored to emergency room dynamics, 

incorporating a logistic trust-based cooperation 

probability function. By applying a ten-stage sequential 

interaction model between a physician and a nurse, we 

examine how trust development influences strategic 

decisions at each stage. Parameters such as a 

collaboration multiplier (δ), trust cap (θ), and 

experience-based inflection point (t0) are 

mathematically modeled to simulate cooperation 

probability and expected utility. The outcomes illustrate 

how cooperation, though theoretically suboptimal in 

early stages, becomes increasingly dominant as trust 

builds, resulting in higher cumulative benefits for 

patient care. 

Moreover, this modeling framework supports practical 

implications. By quantifying the conditions under which 

cooperation becomes the dominant strategy, it provides 

a rigorous basis for designing interventions such as 

team-based training, incentive alignment, and 

institutional protocol redesign that can shift ER 

dynamics toward more collaborative equilibria. Thus, 

mathematical game models, when integrated with 

behavioral and institutional parameters, offer powerful 

tools for understanding and improving the complex 

decision systems that underpin emergency healthcare 

delivery. 

2. Review of Related Works 

Understanding decision-making dynamics in high-

pressure healthcare environments has long been a focus 

of interdisciplinary research, especially in emergency 

room (ER) settings where rapid, cooperative actions are 

essential. The application of game theory to healthcare 

has grown in prominence over the past two decades, 

providing a structured approach to analyze strategic 

interactions among professionals with potentially 

conflicting objectives. Early work by Levati et al. 

(2007) used experimental game theory to investigate 

trust and reciprocity in repeated interactions, laying the 

groundwork for modeling cooperation under 

uncertainty. 

In the context of healthcare, authors have explored 

various game-theoretic frameworks to analyze 

coordination problems. For instance, Liu et al. (2016) 

applied evolutionary game theory to understand the 

cooperation between hospitals and patients under 

insurance incentives, while Zhang and Zhang (2020) 

examined Stackelberg games to optimize hospital 

resource allocation. However, few studies have 
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addressed physician-nurse interactions specifically, 

despite their centrality in ER operations. These 

interactions often involve real-time decisions that 

require mutual trust and aligned incentives, making 

them well-suited for dynamic game-theoretic modeling. 

The Centipede Game, introduced by Rosenthal (1981), 

provides a sequential framework for studying such 

trust-based decisions. It has been used to model 

cooperation in economics (McKelvey & Palfrey, 1992), 

behavioral psychology (Andreoni & Miller, 1993), and 

political science, but its application to healthcare team 

dynamics remains novel. In its standard form, the 

Centipede Game predicts early defection as the rational 

equilibrium, yet empirical evidence often shows 

sustained cooperation, particularly in repeated or 

institutionalized contexts. This divergence has prompted 

modifications incorporating bounded rationality, 

reputation effects, and, more recently, trust dynamics 

(Charness & Rabin, 2002). 

Our work builds on these insights by integrating a 

logistic trust function into the Centipede framework, an 

approach that echoes methods in dynamic behavioral 

modeling (Fehr & Schmidt, 1999). By doing so, we 

reflect the evolving nature of trust in real-world clinical 

interactions, which are influenced by systemic factors 

like team training, shared protocols, and prior 

experiences (Reader et al., 2009). Studies in healthcare 

management also suggest that trust is not only 

interpersonal but deeply embedded in institutional 

practices (Weiner et al., 2008), reinforcing the 

importance of capturing both individual and systemic 

variables. 

Furthermore, research on interprofessional collaboration 

in ERs emphasizes the impact of communication, 

hierarchy, and shared mental models on team 

performance (Manser, 2009; Kilner & Sheppard, 2010). 

These insights align with our model’s emphasis on how 

structural trust such as collaborative routines can shift 

strategic equilibria toward cooperation. Although 

simulation-based studies have shown that team training 

can reduce medical errors and enhance coordination 

(Salas et al., 2008), a rigorous mathematical treatment 

of these dynamics remains underdeveloped. Our 

contribution addresses this gap by quantifying the effect 

of trust dynamics on cooperation over time in ER 

settings. 

In summary, while existing literature has established the 

relevance of game theory, trust, and team dynamics in 

healthcare, our model uniquely combines these 

elements in a formal Centipede Game framework, 

providing a novel lens through which to examine and 

optimize real-time clinical decision-making. 

This study strategically apply mathematical exploration 

using centipede game theory to solve problems related 

to emergency room interactions between the hospital 

workers such as physiciannurse. The objectives of this 

study include: to examine how trust and institutional 

factors influence cooperative behavior during high-

stakes clinical decision-making; to determine the 

logistic cooperation probability function PC (t) that 

evolves with time and parameters such as trust cap θ, 

sensitivity λ, and inflection point t0; to study the 

expected utility function EUC (t) that integrates both 

cooperative and non-cooperative outcomes over ten 

stages; to plot the defective payoffs for both the 

physician and the nurse over the stages t = 1 to t = 10, 

assuming δ = 1.2, α = 0.6, and θ = 0.8; and to show that 

while classical game theory predicts early defection, 

introducing trust-based probability functions and 

collaborative incentive structures can alter the 

equilibrium and promote sustained cooperation between 

physicians and nurses in emergency settings. 

3. Methodology  

The example of a Centipede theory Structure is given in 

the Figure 1 below. The Figure 1 illustrates a 10-stage 

centipede game modeled within a healthcare context, 

involving two hospitals, Hospital A and Hospital B. At 

each stage, the hospital whose turn it is must decide 

whether to Take — ending the cooperation to secure an 

immediate individual benefit — or Pass, allowing the 

collaboration to continue and potentially yield greater 

joint benefits. The payoffs at each terminal node show 

the distribution of benefits to both hospitals, with the 

first number representing Hospital A’s payoff and the 

second Hospital B’s. 

As the game progresses, the potential rewards for 

cooperation increase, encouraging both hospitals to 

continue passing and collaborating. For example, early 

Take actions yield modest benefits like (2,1) or (1,3), 

while later cooperation can lead to higher payoffs such 

as (9,11). However, the temptation to defect and take 

the guaranteed immediate payoff is always present, 

representing the tension between short-term self-interest 

and long-term mutual gain. 

This model reflects real-world healthcare decisions 

where hospitals must decide whether to share patient 
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data, research findings, or resources. Cooperation can 

lead to improved patient outcomes and cost efficiencies, 

but distrust or fear of exploitation may cause premature 

withdrawal. Thus, the diagram highlights the strategic 

decision-making and risks inherent in collaborative 

healthcare partnerships. It emphasizes the importance of 

trust and the challenges in achieving sustained coop- 

eration despite the potential for higher collective 

benefits. 

This section also detailed Players, Game Structure and 

Payoff Function. Let there be two players: 

i. P1: Physician 

ii. P2 : Nurse 

Assumption: They alternate turns to cooperate (C) or 

defect (D). 

The game consists of n stages (decision points). At each 

stage t ∈ {1, 2, . . . , n}, the player whose turn it is 

chooses either: 

i. C (Continue): Pass the decision to the next 

player and increase the total payoff. 

ii. D (Defect): End the game and receive an 

immediate payoff. Where: 

Table 1: The payoff structure, at stage t, δ > 1 and α, 

β ∈ (0, 1) 

Choice1(C) 𝑣𝑡
(1)
, 𝑣𝑡
(2)
= δ

𝑡t ·  α , δ𝑡  ·  (1 −  α) 

Choice2(D) 𝑣𝑡
(1)
, 𝑣𝑡
(2)
= δ

𝑡t ·  β , δ𝑡  ·  (1 −  β) 

i. δ>1:trustmultiplierorcollaborationgrowth rate 

ii. α,β∈(0,1):proportionsofpayoffsplitdependingoncoop

erationordefection 

 

3.1 Backward Induction (Subgame Perfect Nash 

Equilibrium), Modified Trust-Based Model and 

Expected Utility with Trust Factor 

Using backward induction and following the Broome 

and Rabinowicz (1999), the rational strategy under 

classical game theory is: 

At t = n        : player defects to maximize payoff  

At t = n – 1  : anticipating defection, the previous player 

also defects 
 

    ⇒ Both players defect early (t = 1), resulting in 

suboptimal outcomes 

The logistic growth function was introduced in a 

biological context by Pierre Fran¸ cois Verhulst in the 

1830s containd in work of Miner (1933) when studying 

population dynamics. The general form representing the 

logistic growth is: 

          𝑓(𝑡)  =
𝐿

1 + 𝑒
−𝑘(𝑡−𝑡0)

               (1) 

 

Where:  

i. L is the carrying capacity (maximum value),  

ii.  k is the growth rate, 

iii.  t0 is the midpoint (inflection point),  

iv. f(t) is the population or adoption level at time 

t. 

   

This equation is widely used across many disciplines 

such as in population growth, epidemiology (disease 

spread), neural networks (activation function), 

economics (adoption of innovations), physics (phase 

transitions) and sociology (information diffusion). 

 

3.2 Definitions of Terms  

i. Trust Cap, θ ∈ (0, 1]: ˆ   

 The maximum achievable level of cooperation 

under ideal circumstances. ˆ   

 Represents the upper bound of the probability 

that an individual or agent will cooperate. ˆ  

 A value of θ = 1 implies full trust is 

theoretically attainable, while lower values 

reflect systemic or structural limits to 

cooperation, even under favorable conditions. 

 

ii. Sensitivity to Time or Experience, λ:  

 Controls the rate at which cooperation increases 

over time. ˆ   

 A higher λ implies that cooperation ramps up 

quickly with experience or exposure, indicating 

a highly responsive system.      

 A lower λ results in a slower growth, 

suggesting that cooperation develops more 

gradually due to slower learning or institutional 

inertia. 

 

iii. Inflection Point, t0: ˆ   

 The critical threshold or milestone at which the 

rate of change in cooperation is highest.  

 Represents a turning point in experience or 

institutional development—such as completing 

a training program, reaching a policy milestone, 

or hitting a critical mass of exposure. ˆ  
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 Before t0, cooperation increases slowly; after t0, 

it accelerates, then gradually levels off toward 

θ.  

To incorporate trust and institutional protocols, 

we define a cooperation probability function 

from equation (1) as: 

             PC(t) =
 θ

1 + e−λ(t−t0) 
        (2) 

 

Where: 

i. rust cap, θ ∈ (0, 1]  

ii. Sensitivity to time or experience, λ  

iii.  Inflection point (e.g., training milestone or 

experience threshold), t0 

 

The graph of PC(t) =
 θ

1+e−λ(t−t0) 
   is a sigmoid (S-

shaped) curve used to model growth or transition 

processes. It starts near zero for very negative t, 

increases gradually, and sharply rises around the 

inflection point t = t0, where the growth rate is maximal. 

As t increases further, the function levels off and 

asymptotically approaches the horizontal line y = θ, 

representing the maximum value.  

The curve is symmetric about t = t0, and the value at 

the inflection point is  
θ

2
 .  

 

In mathematical exploration of the centipede game 

theory applied to emergency room (ER) interactions, 

the function PC(t) =
 θ

1+e−λ(t−t0) 
  represent the 

probability of cooperation between medical personnel 

over time. The sigmoid shape reflects how initial 

hesitation or mistrust (low t) gives way to rapid trust-

building and collaboration as critical decisions arise 

near t = t0, the inflection point. As time progresses and 

mutual benefits are recognized, cooperation stabilizes 

near θ, the maximum sustainable level. This aligns with 

game-theoretic predictions of increasing cooperation 

when future payoffs outweigh immediate self-interest. 

 

Let the expected utility of cooperating at stage t be: 

EUC(t) = 𝑃𝐶 (t) · δ
t · α + (1 − pc (t)) ·

v𝑡
(1)
                 (3)                  

 

Players will choose to cooperate if: 

EUC(t) >  v𝑡
(1)
      ⇒  trust modifies the equilibrium 

 

Where: 

i. EUC (t) is the expected utility at time t; it reflects 

the weighted average of outcomes when a player 

decides to cooperate, 

ii. PC (t) is the probability that event C occurs at 

time t, 

iii. δ t is the discount factor applied over time t,  

iv. α is the utility received if event C occurs, v. v (1) 

t is the utility in the alternative scenario when 

event C does not occur. 
 

3.3   Background Assumption 

We are analyzing decision-making in a repeated game 

setting (such as the Centipede Game), where at each 

stage t, a player decides whether to: 

i. Cooperate (trust the other player or institution), 

or 

ii. Defect (act independently based on personal 

expected value). 
 

Incorporating trust and institutional learning into the 

model means that the decision to cooperate is not 

deterministic, but instead depends on some probability 

of cooperation, PC (t), which evolves over time. 
 

3.4 Defining Expected Utility of Cooperation, 𝐄𝐔𝐂(𝐭) 

We assume: 

i. A player cooperates at time t with probability 

PC(t). 

ii. If cooperation succeeds, the player gains a 

discounted future payoff, represented by δt·α, 

where:  

iii.  δ: Time discount factor (future rewards are worth 

less).  

iv.  α: Reward from successful cooperation (e.g., 

payoff from joint action). 

v.  If cooperation fails, the player receives a fallback 

or default utility, vt
(1) , which is the payoff from 

unilateral action. 

 

Thus, the expected utility of cooperation is given by: 
 

EUc(t) = Pc(t) · δ t · α⏟                  +         (1 − pc  (t)) · (1 –  PC (t)). v⏟                  
(1)
               4 

Expected gain from cooperation         Fallback utility if cooperation fails  

 

This is a probabilistic utility function that captures both 

trust and the reward structure. 
 

3.5 Decision Rule: When Do Players Cooperate? 

A rational player will choose to cooperate only if the 

expected utility from cooperating exceeds the utility 

from defecting: 

EUC(t) > Vt
(1)
                             5   
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Substituting EUC (t):   

𝑝𝑐(𝑡). δ
𝑡 ·  α + (1 − 𝑝𝑐(𝑡)) · vt

(1) > vt
(1)                  

𝑝𝑐(𝑡). (δ
𝑡 ·  α− vt

(1)) > 0   

So, cooperation is favorable only when the discounted 

cooperative payoff exceeds the fallback payoff: 

δ
𝑡 ·  α − vt

(1)
                    6   

and only to the extent that PC (t) > 0; meaning trust 

modulates when this inequality holds. 

 

3.6 Trust Modifies the Equilibrium 

In this model: 

i. The presence of a dynamic trust function PC (t), 

which increases over time or with institutional 

investment, shifts the equilibrium. 

ii. Trust does not just reflect willingness to 

cooperate; it quantitatively alters the expected 

utility.  

Thus: 

  EUC(t) >  v𝑡
(1)
      ⇒ trust modifies the equilibrium 

This is especially relevant in institutional or 

organizational settings where cooperation is learned or 

built over time (e.g., teams, hospitals, governments). 

 

This structural formula is prevalent in several 

disciplines like behavioral economics and decision 

theory; models of intertemporal choice and prospect 

theory often use similar formulations; computational 

neuroscience and reinforcement learning; decision-

making under uncertainty and over time is modeled. 

This has contributed meaningfully to the area; health 

economics and risk analysis; treatment decisions over 

time with uncertain outcomes. 

4. Results  

This section shows the computation of δ t at early stages and computation of coorperation probabilities, PC (t). 

 

4.1 Computation of δ t at Early Stages 

Given the trust multiplier, δ = 1.1, then, the exponential growth of cooperation benefits at each stage t is computed as 

follows: 

 

Table 2: The summary of the computed values oftrust multiplier, δ = 1.1 for each stage t from 1 to 10 

Stage,t 1 2 3 4 5 6 7 8 9 10 

δt 1.1 1.21 1.331 1.4641 1.61051 1.77156 1.94872 2.14359 2.35795 2.59374 

 

4.2 Computation of Cooperation Probabilities PC(t) :  

  θ = 0.95, λ = 0.6, t0 = 2.573 

The following table summarizes the computed values of PC (t) for each stage t from 1 to 10. This table shows how the 

cooperation probability increases with each stage t, reflecting the growing trust as the interaction progresses. 

 

Table 3: The summary of the computed values of PC (t) for each stage t from 1 to 10 

Stage,t 1 2 3 4 5 6 7 8 9 10 

PC(t) 0.266 0.394 0.536 0.667 0.770 0.842 0.888 0.915 0.930 0.939 

We calculate the cooperative payoff for each stage t. 

 

Table 4: Cooperative Payoff Table for t = 1 to t = 10, δ = 1.2, α = 0.6 

Stage ,t Physician’s Payoff u(1)= δt·α t Nurse’s Payoff u(2)= δt·(1−α) t 
1 0.72 0.48 
2 0.864 0.576 
3 1.037 0.691 
4 1.244 0.829 
5 1.493 0.995 
6 1.792 1.194 
7 2.150 1.433 
8 2.580 1.720 
9 3.096 2.064 
10 3.715 2.477 
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The Figure 3 below represents a 10-stage centipede game between two healthcare professionals: a Physician and a 

Nurse. Each stage models a decision point where the current player chooses either to Take the payoff immediately or 

Pass the opportunity to the other player, potentially increasing the joint benefits. The payoffs are based on the 

cooperative payoff table, calculated using the parameters δ=1.2 and α = 0.6 which reflect the growth factor and payoff 

distribution between the Physician and Nurse, respectively. 

 

At early stages, the payoffs are relatively small, with the Physician receiving 0.72 and the Nurse 0.48 at stage 1. As the 

game progresses, the payoffs grow exponentially, reaching 3.715 for the Physician and 2.477 for the Nurse by stage 10. 

This increase incentivizes players to continue cooperating by passing their turn rather than taking the immediate payoff. 

The game captures the tension between short-term self-interest and long-term collaboration in healthcare settings, such 

as shared patient care or research. Both players must weigh the benefits of continuing cooperation against the risk of the 

other party defecting. The structure emphasizes the importance of trust and strategic decision-making in achieving 

optimal outcomes. Ultimately, the centipede game highlights how cooperation can yield greater collective benefits but 

requires patience and confidence in the other player’s commitment. 

 

Next, we calculate the Expected Utility with Trust Factor for each stage t = 1 to t = 10, assuming the following 

parameters. The expected utility is given by: 

        EUC(t) = 𝑃𝐶 (t) ·  δ
t · α+ (1 − pc (t)) · v𝑡

(1)
   

        where · v𝑡
(1)
= δ

t ·  β.  

 

Table 5: Expected Utility Table for t = 1 to t = 10, δ = 1.2, α = 0.6, θ = 0.8, λ = 0.5, t0 = 5 

Staget PC(t) v(1) 
t EUC(t) Nature of Trust[EUC(t)>v(1)] t 

1 0.09536 0.48 0.50289 Equilibrium 

2 0.14594 0.576 0.61803 Equilibrium 

3 0.21515 0.6912 0.76556 Equilibrium 

4 0.30203 0.829 0.95440 Equilibrium 

5 0.40000 0.995 1.19420 Equilibrium 

6 0.49797 1.194 1.49158 Equilibrium 

7 0.58485 1.433 1.85228 Equilibrium 

8 0.65406 1.720 2.28242 Equilibrium 

9 0.70464 2.064 2.79110 Equilibrium 

10 0.73931 2.477 3.39230 Equilibrium 

 

We will plot the cooperative payoffs for both the physician and the nurse over the stages t = 1 to t = 10, assuming δ = 1.2 

and α = 0.6. 

The cooperative payoffs are given by: 

(ut 
(1)
, ut 
(2)
) = δ

t · α, δt · (1 − α)) 

The graph in Figure 4 displays the cooperative payoffs for both the physician and the nurse over 10 stages. The blue 

curve represents the physician’s increasing payoff, while the red curve shows the nurse’s payoff. As the stages progress, 

both payoffs grow exponentially due to the trust multiplier δ. 

 

4.3 Graphs of 𝑷𝑪 (𝐭), 𝐯𝐭 
(𝟏)

 , and 𝐄𝐔𝐂(𝐭) 

The graphs illustrate a continuous increase in cooperation probability 𝑃𝐶 (t), value  vt 
(1)
,  and  expected utility EUC(t) 

from stages 1 to 10. As trust builds over time, 𝑃𝐶 (t) rises sigmoidally, enhancing EUC(t), which consistently outpaces 

the base value  vt 
(1)

.  

 

This table shows how the cooperation probability increases with each stage t, reflecting the growing trust as the 

interaction progresses. 
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Table 6: Simulated Values for Centipede Game Stages (Trust-Based Model) θ = 0.95, α = 0.6, β = 0.8, λ = 0.6, t0 = 

2.573 

Stage t δt PC(t) Coop. Payoff(u(1),u(2)) t t Def. Payoff (v(1),v(2)
) t t 

EUC(t) Nature of Trust 

1 1.100 0.26613 (0.660,0.440) (0.880,0.220) 0.82145 No equilibrium 

2 1.210 0.39414 (0.726,0.484) (0.968,0.242) 0.87262 No equilibrium 

3 1.331 0.53552 (0.7986,0.5324) (1.0648,0.2662) 0.92224 No equilibrium 

4 1.4641 0.66677 (0.87846,0.58564) (1.17128,0.29282) 0.9760 No equilibrium 

5 1.61051 0.77040 (0.96631,0.64420) (1.28841,0.32210) 1.04026 No equilibrium 

6 1.77156 0.84224 (1.06294,0.70862) (1.417249,0.35431) 1.11883 No equilibrium 

7 1.94871 0.88767 (1.16923,0.77949) (1.55900,0.38974) 1.21301 No equilibrium 

8 2.14359 0.91475 (1.28615,0.85744) (1.714871,0.42872) 1.32270 No equilibrium 

9 2.35795 0.93032 (1.41477,0.94318) (1.88636,0.471590) 1.44763 No equilibrium 

10 2.59374 0.93910 (1.55625,1.03750) (2.07500,0.51875) 1.58784 No equilibrium 

 

The Centipede Game theory Figure 7 illustrates a 

sequential, trust-based interaction between two players 

over 10 decision-making stages. Each node represents a 

stage where a player can choose to either cooperate (C) 

and pass the decision to the next stage, or defect (D) and 

terminate the game, claiming the current payoff. The 

game begins at Stage 1 and proceeds rightward, 

alternating decision points between players. At each 

stage, the players face the dilemma of trusting the 

opponent for potentially higher joint payoffs by 

continuing, or defecting early for immediate personal 

gain. 

 

The payoffs increase with each cooperative move, 

reflecting a growing benefit of mutual trust, but also a 

rising temptation to defect. For example, by Stage 10, 

the cooperative payoff is (1.56, 1.04) while the 

defection payoff is (2.08, 0.52), illustrating the 

imbalance favoring early defection. 

 

However, the absence of equilibrium in all stages 

indicates persistent strategic tension, with no stable 

outcome that both players would choose unilaterally. 

The diagram captures the essence of trust evolution and 

decision-making dynamics under uncertainty, 

emphasizing the potential breakdown of cooperation 

despite mutual gains. It serves as a visual tool to 

analyze rational behavior in iterated games. 

 

Next, we plot the defective payoffs shown in Figure 8 

for both the physician and the nurse over the stages t = 

1 to t = 10, assuming δ = 1.1 and β = 0.8.  

 The defective payoffs are given by:   
 

      (vt 
(1)
, vt 
(2)
) = δ

t · β , δt · (1 − β)) 

 

 

5. Conclusion 

This model shows that while classical game theory 

predicts early defection, introducing trust-based 

probability functions and collaborative incentive 

structures can alter the equilibrium and promote 

sustained cooperation between physicians and nurses in 

emergency settings. The gap between the Physician’s 

and Nurse’s payoffs widens progressively with each 

stage. This suggests a growing disparity in rewards or 

benefits over time. 

 

The term defective imply reduced or constrained 

payoffs due to inefficiencies, misaligned incentives, or 

systemic issues. Despite this, the Physician’s defective 

payoff still outpaces the Nurse’s, possibly highlighting 

inequities in compensation or recognition in the system. 

The graph visually demonstrates inequality in growth 

trajectories between two professional roles in a 

healthcare setting. It raises questions about fairness, 

incentive design, and long-term sustainability of such 

payoff structures. The exponential nature of the curves 

also suggests that small differences in growth rates can 

lead to significant disparities over time, warranting 

strategic adjustments if equity is a goal. 
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Theorem 1 (Trust-Modified Equilibrium in Repeated 

Games). Let 

EUC(t) = 𝑃𝐶 (t) ·  δ
t · α+ (1 − pc (t)) · v𝑡

(1)
   

 

denote the expected utility of cooperating at stage t in a 

repeated game, where: 

 𝑃𝐶 (t) ∈ [0, 1] is the time-dependent probability 

of successful cooperation (trust), 

 δ > 0 is the discount factor for future rewards, ˆ   

 α > 0 is the payoff from successful cooperation, 

ˆ  

 𝑣𝑡 (1) is the utility from unilateral (non-

cooperative) action at stage t. 

 

Then: 

      EUC(t) >  v𝑡
(1)

   ⇔   𝑝𝑐(𝑡). (δ
𝑡 ·  α− vt

(1)) > 0      

Therefore, cooperation becomes a rational strategy if 

and only if 

      δ𝑡 ·  α > vt
(1)

  and   𝑝𝑐(𝑡) > 0.  

 

 

 

This implies that: 

The existence and evolution of trust, represented by 

𝑝𝑐(𝑡), quantitatively shifts the game’s equilibrium—

rendering cooperation optimal in scenarios where it 

would not be in the absence of trust. 

 

Corollary 1  (Threshold for Rational Cooperation). 

Define the trust threshold for rational cooperation as: 

     PC
min(t) =

vt
(1)

δ
t .   α
    

Then cooperation is rational only if   

      𝑝𝑐(𝑡) > PC
min(t) 

Proof. From the main theorem, we know that 

cooperation is rational if and only if: 

     EUC(t) >  v𝑡
(1)

   ⇔   𝑝𝑐(𝑡). (δ
𝑡 ·  α− vt

(1)) > 0      

Case 1: Suppose δ
𝑡 ·  α− vt

(1)
 . Then the term  

(δ
𝑡 ·  α− vt

(1)) > 0, and to preserve the inequality, we 

must have: 

         𝑝𝑐(𝑡) > 0 

 

We isolate  𝑝𝑐(𝑡) explicitly: 

        𝑝𝑐(𝑡). (δ
𝑡 ·  α− vt

(1)) > 0     ⇒   𝑝𝑐(𝑡) >
vt
(1)

δ
t .  α

 

 

This defines the minimum trust threshold: 

       PC
min(t) =

vt
(1)

δ
t .   α

 

 

Case 2: Suppose δ𝑡 · α ≤  vt
(1)

 . Then the term 

 (δ
𝑡 ·  α − vt

(1)) ≤ 0, and the left-hand side becomes: 

𝑝𝑐(𝑡). (δ
𝑡 ·  α− vt

(1)) ≤ 0      

 

Thus: 

  EUC(t) ≤ v𝑡
(1)

 

and cooperation is not rational in this case. The 

inequality 

    𝑝𝑐(𝑡) >
vt
(1)

δ
t .  α

 

has no valid solution because the right-hand side is 

greater than or equal to 1, while   𝑝𝑐(𝑡) ≤ 1. 

 

Conclusion: Cooperation is rational if and only if: 

δ
𝑡 ·  α > vt

(1)    and      𝑝𝑐(𝑡) >
vt
(1)

δ
t .  α
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which completes the proof.   
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Figure 1: A 10-stage Centipede Game modeling cooperation decisions between two hospitals in healthcare. 
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Figure 2: Graph of the sigmoid function PC(t) =
 θ

1+e−λ(t−t0) 
    showing the asymptote at y = θ and inflection point at t = 

t0.  

PC(t) =
 θ

1 + e−λ(t−t0) 
    

PC(t) 

 

 
        Asymptote:y=θ 

       Inflection:t=t0 

1 

 
 

0.5 

t 

T0,
θ

2
 

 



IKR Publishers  

 

©IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers  Page 13 

 

Cooperative Payoffs of Physician and Nurse 
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Figure 4: Cooperative Payoffs of Physician and Nurse over 10 stages 
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Figure 5: Graph of Cooperation Probability, Value, and Expected Utility 
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                     Physician 
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            Nurse          (3.096, 2.064)         

 
     Physician    (2.580, 1.720) 

 

      Nurse         (2.150, 1.433) 

 

       Physician     (1.792, 1.194)  
 

                                               Nurse 
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    Physician (1.244, 0.829)  
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  (0.864, 0.576) 

 

 

                         Physician (Player 1) 
  

 

 

 

 

 

  (0.72, 0.48) 

Figure 3: 10-stage Centipede Game in Healthcare: Payoffs for Physician and Nurse at each stage. 
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Figure 6: Continuous Graph of Cooperation Probability, Value, and Expected Utility 
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Figure 7: Centipede Game Tree for 10 Stages 
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Figure 8: Defective Payoffs of Physician and Nurse over 10 stages  
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