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This study investigates the persistent internet connectivity gap across Africa 

through the lens of geo-spatial environmental development. While global 

advancements in wireless technologies have narrowed the digital divide in 

many regions, African nations continue to face signal degradation, high 

latency, and inconsistent throughput. These challenges are frequently attributed 

to socio-economic and infrastructural factors. Yet, this article presents a 

technical perspective, attributing a significant portion of the problem to the 

poor geo-spatial coordination of both natural and artificial terrain features. 

Drawing on satellite imagery, propagation modeling, and machine learning 

techniques, this research highlights how the geo-spatial arrangement of 

environmental features relative to transceiver systems critically impacts signal 

reliability. The findings underscore the urgent need for terrain-informed 

planning in telecommunications infrastructure to foster more inclusive digital 

growth across the continent. 
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1. Introduction 
 

Access to fast, reliable internet has become a 

fundamental requirement for socio-economic growth, 

digital inclusion, and global competitiveness. Yet, 

across many African nations, internet connectivity 

remains uneven and often unreliable, especially in rural 

and underdeveloped regions(Baccouret al., 2013). 

While significant investments have been made to 

expand telecommunication infrastructure, many areas 

still suffer from weak signals, high latency, and 

inconsistent data throughput. These shortcomings are 

typically attributed to a lack of infrastructure, regulatory 

challenges, or economic constraints. However, a less 

discussed but equally critical factor lies in the geo-

spatial development of the environment itself(Afolabi et 

al., 2024).The spatial arrangement of natural and 

artificial terrain features such as hills, buildings, 

vegetation, and road networks has a significant 

influence on signal propagation. When these features 

are poorly coordinated with transceiver positions, signal 

degradation becomes inevitable. This challenge is 

particularly acute in many African settings where urban 

planning is fragmented, and environmental design 

rarely considers Radio Frequency (RF) transmission 

dynamics(Awal-Halifa et al., 2017). The result is a 

persistent signal impairment that worsens the 

continent’s digital divide. Empirical path loss models, 

widely used in the planning of wireless networks, often 

fall short in accounting for the complex and diverse 

terrain patterns found across African landscapes. These 

models, developed in vastly different environments, fail 

to generalize accurately to settings with highly irregular 

spatial structures(Jimoh et al., 2015). This research was 

inspired by the observed limitations of such models and 

driven by a desire to develop more accurate, data-driven 

alternatives tailored to the African context. This study 
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examines how the poor coordination of geo-spatial 

features contributes to the internet connectivity gap in 

Africa by leveraging satellite imagery, digital elevation 

models (DEMs), and hybridized machine learning 

techniques, specifically,Convolutional Neural Networks 

(CNNs) to model and predict signal impairments more 

accurately(Alhichriet al., 2021). Emphasis is placed on 

identifying which environmental features most 

significantly affect signal quality and how improved 

spatial planning could mitigate these issues. 

 

The overarching goal is to provide technical 

insights that can guide terrain-aware infrastructure 

planning, enabling better signal coverage, reduced 

latency, and an improved user experience. This terrain-

informed approach to RF planning has the potential to 

shift the discourse from reactive fixes to proactive 

design, bridging the connectivity gap through intelligent 

environmental alignment. The remaining sections of 

this article are outlined as follows: section two, 

highlighting the overview of internet signal impairment 

due to terrain inducement, section three presents the 

research approach, study focus, and internet service 

disparity. Section four presented the results and 

discussion,and section five concluded the article. 

 

2. Overview of Internet Signal 

Impairment due to Terrain Inducement 
 

The study of internet connectivity challenges in Africa 

has evolved significantly, with early investigations 

primarily focusing on infrastructure limitations and 

mobile network service unavailability. In the early 

2000s, most analyses emphasized the lack of physical 

infrastructure, such as fibre optics and mobile towers, 

particularly in remote and rural communities (IEEE 

Communications Society, 2014). Subsequent studies 

between 2005 and 2010 began to introduce 

demographic and economic factors as major 

contributors to the digital divide, emphasizing poverty, 

low literacy, and limited governmental investment in 

ICT development(Qaisar et al., 2010). In the midst of 

2014, attention shifted to include environmental and 

spatial dimensions, recognizing that terrain features, 

such as mountains, valleys, vegetation, and building 

densities, significantly affect signal coverage and 

internet accessibility (Kelif et al., 2014). 

 

In 2017, terrain-induced disparity gained traction 

as a core determinant of network performance, with 

several studies linking poor connectivity to poorly 

coordinated topographical development and land use 

planning in many African regions(Awal-Halifa et al., 

2017).  More recently, geo-spatial analysis tools such as 

GIS and satellite imaging have been employed to study 

the spatial distribution of broadband infrastructure and 

identify underserved regions(Sotiroudiset al., 2021). 

These tools enabled researchers to correlate signal 

degradation with terrain slope, clutter, and elevation 

differences, further highlighting how physical 

geography contributes to Africa’s digital exclusion. 

However, as 4G and 5G deployments expand across the 

continent, the limitations of traditional infrastructure-

centered models become more evident. The increasing 

demand for real-time connectivity, high-speed data, and 

smart services requires that environmental and spatial 

factors be integrated into planning frameworks. In 2022, 

emerging studies started addressing these challenges by 

modeling the relationship between topography and 

signal reachability using artificial intelligence and 

terrain-influenced datasets(Abdulkarim et al., 2022). 

These new approaches reveal that connectivity issues 

are not solely due to a lack of investment but also to the 

misalignment between signal propagation dynamics and 

the terrain arrangements surrounding users. 

 

Recent research by (Arnold et al., 

2024)emphasizes the importance of spatial planning in 

broadband network development. Their findings 

showed that network capacity and reliability 

significantly improve when terrain-informed 

deployment strategies are applied.Maurício et 

al.,(2023)explored terrain-aware broadband planning 

using satellite imagery and found that densely vegetated 

and hilly regions in Sub-Saharan Africa are 

disproportionately underserved due to signal attenuation 

and reflection losses. Sivaz and Aykut, (2024)further 

introduced a multi-layer GIS model that maps out 

connectivity disparities by overlaying terrain roughness, 

population density, and network availability. Their 

approach has helped to visualize the hidden inequalities 

in internet access caused by poorly integrated spatial 

development. 

 

Therefore, a pressing research gap exists in 

addressing the terrain-induced geospatial internet divide 

through intelligent modelling frameworks. Most past 

studies have treated connectivity challenges as either 

infrastructural or economic, overlooking how land use 

planning, natural geography, and elevation variance 

influence broadband deployment success. Moreover, 

little attention has been paid to modelling the 
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synergistic effect of environmental features and wireless 

propagation behaviour using data-driven 

approaches.This study helps to bridge this gap by 

contributing in three strategic ways: 

 

a. employ satellite images and digital elevation 

models (DEMs) to develop the 3D geo-spatial 

distribution of the study area and incorporated 

the clutter pathloss values to map and 

understand how terrain features interact with 

internet infrastructure layouts to affect signal 

performance. 

 

b. apply ML algorithms such as CNNs and 

Random Forest to geo-referenced datasets, to 

identify patterns of digital exclusion and predict 

potential connectivity failures with terrain as a 

core input variable. 

 

c. develop policy-supportive outcomes that will be 

translated into actionable visual maps and 

guidelines that can assist policymakers and 

network planners in designing terrain-adaptive 

internet connectivity strategies, especially in 

hard-to-reach African communities. 

 

This approach promotes a paradigm shift from 

conventional network expansion to intelligent and 

inclusive terrain-sensitive planning, offering long-term 

solutions to Africa’s persistent internet divide. 

 

3. Research Approach 
 

The approach involved the chatting of four 

interconnected routesspanning urban, suburban, and 

rural areas of Ilorin, Kwara State, Nigeria. Ilorin is a 

town in sub-Saharan Africasituated in the north-central 

region of Nigeria, approximately 300 km inland from 

the coast of the Atlantic, and lies betweenlatitudes 8°30’ 

N and 8° 40’ N and longitudes 4° 30’ N and 4° 40’ 

N(Jimoh et al., 2022). The mobile signal strength was 

captured for four distinct mobile network service 

providers of MTN, GLO, AIRTEL, and 9MOBILE. The 

measured signal pathlosses for each of the mobile 

service providers were estimated using the expression 

of equation 1 by (Jimoh et al., 2022) to compute the 

mobile signal path loss values for each of the network 

providers along each of the field work measurement 

routes using the field measurement setup of Figure 1. 

 

 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑃𝑎𝑡ℎ𝐿𝑜𝑠𝑠(𝑑𝐵) 

       =  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟𝑃𝑜𝑤𝑒𝑟(𝑑𝐵) − 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑃𝑜𝑤𝑒𝑟(𝑑𝐵)  

 

 

 

 

 

 

 

 

Figure 1: Field Measurement Setup. 

3.1 Geo-Spatial Images’ development 
 

The three-dimensional (3D) mean geo-spatial 

distribution of terrain features along the designated 

measurement routes was generated using the Google 

Collaboratory cloud-based Jupyter Notebook 

environment. This process involved overlaying two-

dimensional (2D) satellite imagery of the terrain with 

elevation data derived from the Digital Elevation Model 

(DEM). The integration of these data sources enabled 

the construction of 3D geo-spatial terrain 

representations for each measurement route, thereby 

offering a more comprehensive understanding of the 

geo-spatial structure of the study areas, as illustrated in 

Figure 2.The close examination of each route's terrain 

characteristics exhibited distinct patterns of spatial 

distribution and settlement alignment. The Emir-Kwasu 

route demonstrated a clustered and irregular terrain 

distribution, where features appeared to be concentrated 

in a non-linear formation. This pattern reflects a poorly 

coordinated settlement layout and a non-linear road 

network, which could influence the propagation 

behavior of radio signals in the area.Similarly, the 

Taiwo-Otte route showed a comparable zigzag 

arrangement of terrain features, albeit with lower 

building density and less pronounced clustering. While 

still indicative of an unstructured settlement pattern, it 

demonstrated relatively less congestion than the Emir-

Kwasu route.In contrast, the GRA-Unilorin route 

exhibited a more orderly and linear distribution of 

terrain features. This alignment suggests a well-planned 

and coordinated urban settlement, which is likely to 

facilitate better signal propagation and less attenuation 

due to more predictable structural spacing. Furthermore, 

the Post Office-ARMTI route revealed a consistent and 

uniformly distributed terrain pattern. The linearity and 

homogeneity observed across all sub-routes within this 

corridor suggest a high degree of replication in the 
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spatial arrangement of features, indicative of a 

structured settlement plan. These characteristics are 

essential in evaluating the interaction between geo-

spatial configuration and mobile signal behavior. The 

influence of these varying settlement patterns and 

terrain arrangements was further examined in Section 4 

of the study, which investigates the disparities in mobile 

network coverage and the emerging connectivity divide. 

Therefore, understanding these geo-spatial dynamics, 

provide more effective models that can be developed to 

mitigate connectivity gaps, particularly in poorly 

planned or irregularly settled regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) The Geo-Spatial Mean Distribution of the Terrain Features along (a) Emir-Kwasu (b) Taiwo-Otte (c) 

GRA-Unilorinand (d) Taiwo-Otte Measurement Routes 

 

3.2  Machine Learning Model Training and 

Input Data 
 

Machine Learning (ML), a subset of Artificial 

Intelligence (AI), involves the development of 

computational models that can learn patterns from data 

and make informed decisions(Badillo et al., 2020). This 

learning process is enabled by the core architectural 

components of ML systems, as illustrated in Figure 3. 

The process begins at the input layer, where raw data is 

received and significant features are extracted for 

further processing(Abdollahzadeh et al., 2024). The 

convolutional layer then captures non-linear features 

from the data, utilizing pooling operations such as 

average or max pooling, depending on the 

configuration. These extracted features are passed to the 

fully connected layer, where they are combined with 

weights and biases, and processed through activation 

functions to generate meaningful outputs(Al-Hakim and 

Prasetiyo, 2024). The final output layer uses this 

processed information to produce the model’s 

prediction or decision. In this study, a machine learning 

framework was trained using 3D geo-spatial mean 

distributions of terrain profiles alongside measured path 

(a) 
(b) 

(c) (d) 
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loss data collected during field experiments(Qi et al., 

2021). The models employed include Random Forest 

(RF), Extreme Gradient Boosting (XGBoost), and 

Convolutional Neural Network (CNN)(Ouadah et al., 

2022). 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

 
Figure 3: The Basic Architecture of Machine Learning Model 

 

4. Results and Discussions 
 

A significant concentration of data points was observed 

in Figure 4 between 275 and 325 meters in altitude, 

where path loss values consistently fall within the range 

of 60 to 110 dBm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Depiction of Mean Path Loss values again 

Mean Altitude values across the Field Work 

Measurement Routes. 
 

This clustering suggests that most of the measurements 

were taken within mid-altitude zones, which may 

represent densely populated or commonly traversed 

areas in the study region. Also, the results indicate no 

clear linear or strong directional relationship between 

altitude and path loss.The scatter is widely distributed 

across altitudes, implying that changes in elevation 

alone do not significantly influence the variation in 

signal attenuation. This suggests that altitude may not 

be the dominant factor affecting signal quality in the 

studied terrain. There are few outliers exist below 40 

dBm, which are unusually low path loss values. These 

points are predominantly located at higher altitudes 

(above 300 m), possibly indicating conditions of 

minimal obstruction or favourable line-of-sight 

communication. Alternatively, they could be a result of 

measurement anomalies or specific terrain 

characteristics such as hilltops or open fields.Unlike 

what might be expected in highly structured urban or 

rural areas, the data does not show a predictable 

increase or decrease in path loss with increasing 

altitude. This indicates that other environmental factors, 

such as terrain clutter, vegetation density, structural 

obstructions, and atmospheric conditionsare likely 

contributing more significantly to signal attenuation 

than elevation differences. Therefore, the lack of strong 

correlation highlights the need for multi-factor analysis 

in radio signal modelling. Relying on altitude alone 

would yield imprecise predictions. Therefore, terrain 

features, building profiles, and weather conditions 

should be integrated into path loss modelling efforts for 

more accurate results. 
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Table 1 (a, b, c and d): Depicting pathloss value’s variation for the four Mobile Service Network along the Field 

Work Measurement Routes 

 

              1(a): Taiwo-Otte Route            1(b): Emir-Kwasu Route 

 

 

 

 

 

 

 

 

 

 

 

 

        
 
 
                   1(c): GRA-Unilorin Routes                    1(d): Post Office-Armti Routes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IKR Publishers  

 

©IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers  Page 30 

 

Table 1 presents the field measurement data, which 

reveal significant signal variation along the Emir-

Kwasu and Taiwo-Otte routes. These fluctuations in 

mobile signal strength are primarily attributed to the 

clustered and poorly coordinated settlement patterns of 

terrain features along these routes. In contrast, the Post 

Office–ARMTI route exhibited relatively moderate 

signal path loss variation, while the GRA–Unilorin 

route showed minimal variation in signal strength. The 

reduced variations observed along these routes can be 

linked to the well-organized and uniformly distributed 

terrain features, which promote more consistent signal 

propagation along the measurement paths. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The Coefficient of Determination of Fit of a 

Regression Model. 

The CNN model demonstrates the highest R-squared 

(R²) value among the evaluated machine learning 

models, indicating its superior predictive accuracy and 

better fit to the training data. With an R² value close to 

0.80, CNN effectively captures the underlying patterns 

in the input data, making it the most reliable model for 

path loss prediction in this study.In comparison, the 

XGBoost model shows a moderate performance with an 

R² value of approximately 0.38, suggesting that while it 

performs reasonably well, its ability to generalize from 

the training data is limited compared to CNN. The 

Random Forest model follows closely with an R² of 

around 0.45, reflecting a slightly better performance 

than XGBoost but still significantly lower than 

CNN.Finally, the trend observed in the line graph 

confirms that CNN outperforms both XGBoost and 

Random Forest, making it the most suitable model for 

terrain-informed radio signal prediction tasks in the 

given context. 

 

5. Conclusions and Recommendations 
 

This study has demonstrated that the internet 

connectivity gap in Africa extends beyond 

infrastructural and economic limitations, revealing a 

critical but often overlooked factor of terrain-induced 

geo-spatial disparities. Through the integration of 

satellite imagery, digital elevation models, and machine 

learning techniques, it has been shown that the spatial 

arrangement of natural and artificial features 

significantly influences signal propagation, quality, and 

coverage reliability. Irregular terrain features, poor 

settlement planning, and uncoordinated infrastructure 

development contribute heavily to signal attenuation, 

latency, and digital exclusion in many parts of the 

continent. Among the models tested, Convolutional 

Neural Networks (CNNs) proved most effective in 

capturing the complex relationship between terrain and 

signal quality, outperforming Random Forest and 

XGBoost models in prediction accuracy. This finding 

supports the argument for adopting data-driven, terrain-

aware planning approaches in broadband infrastructure 

deployment. 

To close the internet divide in Africa, policymakers, 

urban planners, and telecommunication service 

providers must prioritize terrain-informed strategies in 

network expansion. This includes the use of geo-spatial 

analytics and machine learning models for predictive 

signal coverage mapping, proactive infrastructure 

placement, and inclusive access designespecially in 

underserved rural and topographically challenging 

areas.In essence, bridging Africa's digital divide 

requires more than just laying fiber or erecting base 

stations; it demands an intelligent coordination between 

technology and terrain. By shifting toward terrain-

sensitive and data-driven broadband planning, Africa 

can take a decisive step toward achieving digital equity 

and sustainable connectivity for all. 
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