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This study investigates the persistent internet connectivity gap across Africa
through the lens of geo-spatial environmental development. While global
advancements in wireless technologies have narrowed the digital divide in
many regions, African nations continue to face signal degradation, high
latency, and inconsistent throughput. These challenges are frequently attributed
to socio-economic and infrastructural factors. Yet, this article presents a
technical perspective, attributing a significant portion of the problem to the
poor geo-spatial coordination of both natural and artificial terrain features.
Drawing on satellite imagery, propagation modeling, and machine learning
techniques, this research highlights how the geo-spatial arrangement of
environmental features relative to transceiver systems critically impacts signal
reliability. The findings underscore the urgent need for terrain-informed
planning in telecommunications infrastructure to foster more inclusive digital

growth across the continent.

1. Introduction

Access to fast, reliable internet has become a
fundamental requirement for socio-economic growth,
digital inclusion, and global competitiveness. Yet,
across many African nations, internet connectivity
remains uneven and often unreliable, especially in rural
and underdeveloped regions(Baccouret al., 2013).
While significant investments have been made to
expand telecommunication infrastructure, many areas
still suffer from weak signals, high latency, and
inconsistent data throughput. These shortcomings are
typically attributed to a lack of infrastructure, regulatory
challenges, or economic constraints. However, a less
discussed but equally critical factor lies in the geo-
spatial development of the environment itself(Afolabi et
al., 2024).The spatial arrangement of natural and
artificial terrain features such as hills, buildings,
vegetation, and road networks has a significant

influence on signal propagation. When these features
are poorly coordinated with transceiver positions, signal
degradation becomes inevitable. This challenge is
particularly acute in many African settings where urban
planning is fragmented, and environmental design
rarely considers Radio Frequency (RF) transmission
dynamics(Awal-Halifa et al., 2017). The result is a
persistent signal impairment that worsens the
continent’s digital divide. Empirical path loss models,
widely used in the planning of wireless networks, often
fall short in accounting for the complex and diverse
terrain patterns found across African landscapes. These
models, developed in vastly different environments, fail
to generalize accurately to settings with highly irregular
spatial structures(Jimoh et al., 2015). This research was
inspired by the observed limitations of such models and
driven by a desire to develop more accurate, data-driven
alternatives tailored to the African context. This study
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examines how the poor coordination of geo-spatial
features contributes to the internet connectivity gap in
Africa by leveraging satellite imagery, digital elevation
models (DEMs), and hybridized machine learning
techniques, specifically,Convolutional Neural Networks
(CNNSs) to model and predict signal impairments more
accurately(Alhichriet al., 2021). Emphasis is placed on
identifying which environmental features most
significantly affect signal quality and how improved
spatial planning could mitigate these issues.

The overarching goal is to provide technical
insights that can guide terrain-aware infrastructure
planning, enabling better signal coverage, reduced
latency, and an improved user experience. This terrain-
informed approach to RF planning has the potential to
shift the discourse from reactive fixes to proactive
design, bridging the connectivity gap through intelligent
environmental alignment. The remaining sections of
this article are outlined as follows: section two,
highlighting the overview of internet signal impairment
due to terrain inducement, section three presents the
research approach, study focus, and internet service
disparity. Section four presented the results and
discussion,and section five concluded the article.

2.  Overview of Internet Signal
Impairment due to Terrain Inducement

The study of internet connectivity challenges in Africa
has evolved significantly, with early investigations
primarily focusing on infrastructure limitations and
mobile network service unavailability. In the early
2000s, most analyses emphasized the lack of physical
infrastructure, such as fibre optics and mobile towers,
particularly in remote and rural communities (IEEE
Communications Society, 2014). Subsequent studies
between 2005 and 2010 began to introduce
demographic and economic factors as major
contributors to the digital divide, emphasizing poverty,
low literacy, and limited governmental investment in
ICT development(Qaisar et al., 2010). In the midst of
2014, attention shifted to include environmental and
spatial dimensions, recognizing that terrain features,
such as mountains, valleys, vegetation, and building
densities, significantly affect signal coverage and
internet accessibility (Kelif et al., 2014).

In 2017, terrain-induced disparity gained traction
as a core determinant of network performance, with
several studies linking poor connectivity to poorly

coordinated topographical development and land use
planning in many African regions(Awal-Halifa et al.,
2017). More recently, geo-spatial analysis tools such as
GIS and satellite imaging have been employed to study
the spatial distribution of broadband infrastructure and
identify underserved regions(Sotiroudiset al., 2021).
These tools enabled researchers to correlate signal
degradation with terrain slope, clutter, and elevation
differences, further highlighting how physical
geography contributes to Africa’s digital exclusion.
However, as 4G and 5G deployments expand across the
continent, the limitations of traditional infrastructure-
centered models become more evident. The increasing
demand for real-time connectivity, high-speed data, and
smart services requires that environmental and spatial
factors be integrated into planning frameworks. In 2022,
emerging studies started addressing these challenges by
modeling the relationship between topography and
signal reachability using artificial intelligence and
terrain-influenced datasets(Abdulkarim et al., 2022).
These new approaches reveal that connectivity issues
are not solely due to a lack of investment but also to the
misalignment between signal propagation dynamics and
the terrain arrangements surrounding users.

Recent  research by (Arnold et al,
2024)emphasizes the importance of spatial planning in
broadband network development. Their findings
showed that network capacity and reliability
significantly improve  when terrain-informed
deployment  strategies are applied.Mauricio et
al.,(2023)explored terrain-aware broadband planning
using satellite imagery and found that densely vegetated
and hilly regions in Sub-Saharan Africa are
disproportionately underserved due to signal attenuation
and reflection losses. Sivaz and Aykut, (2024)further
introduced a multi-layer GIS model that maps out
connectivity disparities by overlaying terrain roughness,
population density, and network availability. Their
approach has helped to visualize the hidden inequalities
in internet access caused by poorly integrated spatial
development.

Therefore, a pressing research gap exists in
addressing the terrain-induced geospatial internet divide
through intelligent modelling frameworks. Most past
studies have treated connectivity challenges as either
infrastructural or economic, overlooking how land use
planning, natural geography, and elevation variance
influence broadband deployment success. Moreover,
little attention has been paid to modelling the
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synergistic effect of environmental features and wireless
propagation behaviour using data-driven
approaches.This study helps to bridge this gap by
contributing in three strategic ways:

a. employ satellite images and digital elevation
models (DEMs) to develop the 3D geo-spatial
distribution of the study area and incorporated
the clutter pathloss values to map and
understand how terrain features interact with
internet infrastructure layouts to affect signal
performance.

b. apply ML algorithms such as CNNs and
Random Forest to geo-referenced datasets, to
identify patterns of digital exclusion and predict
potential connectivity failures with terrain as a
core input variable.

c. develop policy-supportive outcomes that will be
translated into actionable visual maps and
guidelines that can assist policymakers and
network planners in designing terrain-adaptive
internet connectivity strategies, especially in
hard-to-reach African communities.

This approach promotes a paradigm shift from
conventional network expansion to intelligent and
inclusive terrain-sensitive planning, offering long-term
solutions to Africa’s persistent internet divide.

3. Research Approach

The approach involved the chatting of four
interconnected routesspanning urban, suburban, and
rural areas of llorin, Kwara State, Nigeria. llorin is a
town in sub-Saharan Africasituated in the north-central
region of Nigeria, approximately 300 km inland from
the coast of the Atlantic, and lies betweenlatitudes 8°30°
N and 8° 40’ N and longitudes 4° 30 N and 4° 40’
N(Jimoh et al., 2022). The mobile signal strength was
captured for four distinct mobile network service
providers of MTN, GLO, AIRTEL, and 9MOBILE. The
measured signal pathlosses for each of the mobile
service providers were estimated using the expression
of equation 1 by (Jimoh et al., 2022) to compute the
mobile signal path loss values for each of the network
providers along each of the field work measurement
routes using the field measurement setup of Figure 1.

MeasuredPathLoss(dB)
= Transmitterpower(ap) — Receiverpyyer(ap)

Fm.a.... )

Figure 1: Field Measurement Setup.

3.1 Geo-Spatial Images’ development

The three-dimensional (3D) mean geo-spatial
distribution of terrain features along the designated
measurement routes was generated using the Google
Collaboratory ~ cloud-based  Jupyter Notebook
environment. This process involved overlaying two-
dimensional (2D) satellite imagery of the terrain with
elevation data derived from the Digital Elevation Model
(DEM). The integration of these data sources enabled
the construction of 3D  geo-spatial terrain
representations for each measurement route, thereby
offering a more comprehensive understanding of the
geo-spatial structure of the study areas, as illustrated in
Figure 2.The close examination of each route's terrain
characteristics exhibited distinct patterns of spatial
distribution and settlement alignment. The Emir-Kwasu
route demonstrated a clustered and irregular terrain
distribution, where features appeared to be concentrated
in a non-linear formation. This pattern reflects a poorly
coordinated settlement layout and a non-linear road
network, which could influence the propagation
behavior of radio signals in the area.Similarly, the
Taiwo-Otte route showed a comparable zigzag
arrangement of terrain features, albeit with lower
building density and less pronounced clustering. While
still indicative of an unstructured settlement pattern, it
demonstrated relatively less congestion than the Emir-
Kwasu route.In contrast, the GRA-Unilorin route
exhibited a more orderly and linear distribution of
terrain features. This alignment suggests a well-planned
and coordinated urban settlement, which is likely to
facilitate better signal propagation and less attenuation
due to more predictable structural spacing. Furthermore,
the Post Office-ARMTI route revealed a consistent and
uniformly distributed terrain pattern. The linearity and
homogeneity observed across all sub-routes within this
corridor suggest a high degree of replication in the
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spatial arrangement of features, indicative of a
structured settlement plan. These characteristics are
essential in evaluating the interaction between geo-
spatial configuration and mobile signal behavior. The
influence of these varying settlement patterns and
terrain arrangements was further examined in Section 4
of the study, which investigates the disparities in mobile
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Therefore, understanding these geo-spatial dynamics,
provide more effective models that can be developed to
mitigate connectivity gaps, particularly in poorly
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Figure 2: (a) The Geo-Spatial Mean Distribution of the Terrain Features along (a) Emir-Kwasu (b) Taiwo-Otte ()

GRA-Unilorinand (d) Taiwo-Otte Measurement Routes

3.2 Machine Learning Model Training and
Input Data

Machine Learning (ML), a subset of Artificial
Intelligence (Al), involves the development of
computational models that can learn patterns from data
and make informed decisions(Badillo et al., 2020). This
learning process is enabled by the core architectural
components of ML systems, as illustrated in Figure 3.
The process begins at the input layer, where raw data is
received and significant features are extracted for
further processing(Abdollahzadeh et al., 2024). The

convolutional layer then captures non-linear features
from the data, utilizing pooling operations such as
average or max pooling, depending on the
configuration. These extracted features are passed to the
fully connected layer, where they are combined with
weights and biases, and processed through activation
functions to generate meaningful outputs(Al-Hakim and
Prasetiyo, 2024). The final output layer uses this
processed information to produce the model’s
prediction or decision. In this study, a machine learning
framework was trained using 3D geo-spatial mean
distributions of terrain profiles alongside measured path
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loss data collected during field experiments(Qi et al.,
2021). The models employed include Random Forest
(RF), Extreme Gradient Boosting (XGBoost), and
Convolutional Neural Network (CNN)(Ouadah et al.,

2022).

Input Layer Convolutional Layer

Pooling Layer Fully Connected Output Layer
Layer
- —>

Figure 3: The Basic Architecture of Machine Learning Model

4. Results and Discussions

A significant concentration of data points was observed
in Figure 4 between 275 and 325 meters in altitude,
where path loss values consistently fall within the range
of 60 to 110 dBm.

120 A

100

80 1

60

Path Loss (dBm)

40 1

20 A

T T T T T T T T
200 225 250 275 300 325 350 375
Altitude

Figure 4: Depiction of Mean Path Loss values again
Mean Altitude values across the Field Work
Measurement Routes.

This clustering suggests that most of the measurements
were taken within mid-altitude zones, which may
represent densely populated or commonly traversed
areas in the study region. Also, the results indicate no
clear linear or strong directional relationship between

altitude and path loss.The scatter is widely distributed
across altitudes, implying that changes in elevation
alone do not significantly influence the variation in
signal attenuation. This suggests that altitude may not
be the dominant factor affecting signal quality in the
studied terrain. There are few outliers exist below 40
dBm, which are unusually low path loss values. These
points are predominantly located at higher altitudes
(above 300 m), possibly indicating conditions of
minimal obstruction or favourable line-of-sight
communication. Alternatively, they could be a result of
measurement  anomalies  or  specific  terrain
characteristics such as hilltops or open fields.Unlike
what might be expected in highly structured urban or
rural areas, the data does not show a predictable
increase or decrease in path loss with increasing
altitude. This indicates that other environmental factors,
such as terrain clutter, vegetation density, structural
obstructions, and atmospheric conditionsare likely
contributing more significantly to signal attenuation
than elevation differences. Therefore, the lack of strong
correlation highlights the need for multi-factor analysis
in radio signal modelling. Relying on altitude alone
would yield imprecise predictions. Therefore, terrain
features, building profiles, and weather conditions
should be integrated into path loss modelling efforts for
more accurate results.
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Table 1 (a, b, c and d): Depicting pathloss value’s variation for the four Mobile Service Network along the Field
Work Measurement Routes

1(a): Taiwo-Otte Route

.Rad'\alDistance(km] Altitude (m) 9Mobile (dBm) MTN (dBm) Glo (dBm) Airtel (dBm)

0.004306757
0.472558267
0.480251747
1.185014354
1.181600293
1.222276342
1.222276342
1.989937038
2621685457
2.621685457
3.200755939
3.200755939
3.584492054
4.136663925
4152132028
4.702082679
5.534515772
6.385471433
6.397142162
7.095050935
8.072981983
8.087689646
8.340654663
8.340654663

1(c): GRA-Unilorin Routes

291
294
295
301
301
300
300
305
320
320
316
316
16
329
329
329
323
318
319
341
335
335
345
345

105
105
87
87
100
100
101
101
99
103
103
92
92
90
106
105
m
95
9%
9%
113
87
87
97

63
59
63
70
65
L
64
66
75
65
63
66
70
75
69
67
66
73
78
71
71
7
76
L

109
109
107
107
107
107
102
102
98
93
93
93
102
102
98
86
81
92
98
97
97
85
85
101

97
98
98
98
97
98
98
98
97
97
98
98
95
98
9%
95
97
97
9%
9%
98
97
98
97

Radial Distance (km) 9Mobile (dBm) MTN (dBm) Glo (dBm) Airtel (dBm)

1(b): Emir-Kwasu Route

Radial Distance (km) SMobile (dBm) MTN (dBm) Glo (dBm) Airtel(dBm)

0.495835001
0.49589001
0.857268911
0.857268911
1.758011205
1.765303448
2.221244786
3.169278269
3.169278269
3.651284066
4.0233200098
4.566066622
4.717761618
5.123559861
5.290314484
5.290314484
0.172348883
0.749594793
0.750036741
1.198106282
1.2235406
2.087183721
2.101415272
2.628683464
2.646994312
3.52293953
3.872885043
3.872885043
4.39184685
4.39184685

Radial Distance (km)

110
110
88
88
102
102
108
79
79
104
97
97
103
102
94
94
105
109
109
102
102
101
101
103
103
93
112
112
95
95

1(d): Post Office-Armti Routes

82
82
64
64
64
64
82
82
82
82
80
80
80
80
84
84
82
82
88
82
82
64
64
64
64
86
86
78
78
80

96
98
98
91
88
88
88
88
84
84
90
90
91
92
92
96
96
96
96
97
100
100
100
62
102
102
107
101
101
99

9Mobile (dBm) MTN (dBm) Glo (dBm) Airtel (dBm)

0.801194365 106 98 82 97 0.857268911 110 88 73 106
0.801194365 107 97 73 97 0.857268911 88 80 73 103
1.033617646 62 % 73 9 1.758011205 88 92 73 113
1.663504938 110 91 84 87 1765303448 102 %0 7 29
W% B @ aww o W om W
5 472996772 108 9 &7 69 3.169278269 108 91 93 111
2.462977559 103 92 62 87 3.169278269 79 92 93 108
0 467681688 103 95 o4 87 3.651284066 79 79 97 104
3159364428 67 o4 60 8o 4.566066622 97 88 97 116
3.319908749 62 94 65 85 4.717761618 97 91 97 102
3.480499243 58 97 66 87 5.290314484 102 92 94 101
3.801795385 50 93 56 85 5.290314484 94 90 92 97
3.962491748 94 94 60 87 6.404426976 90 91 83 93
412321516 94 94 66 89 6.819182366 91 88 82 93
4.283962684 88 92 59 85 7.032188214 92 88 83 90
4.44473182 88 9 61 87 7.689960978 93 92 85 93
4.92714707 62 97 65 87 7.914604182 93 82 91 90
5.087982494 104 98 65 89 8.141570717 94 90 91 93
5.248830869 101 98 97 85 8.370671777 94 87 38 90
5.409690862 101 99 98 87 8 601736503 o5 89 89 93
R T~ B

5.89233177 88 98 97 87 9.305244206 9% 94 78 90
6.214135287 107 99 98 85 9.542761914 96 90 80 93
6.375048035 62 99 98 87 10.02167792 97 92 77 93
6.535067253 109 98 99 89 10.26289502 98 91 76 90
6.695892605 109 98 98 85 10.50517719 98 839 75 93
6.857823733 110 99 98 87 10.74845231 99 93 74 80
7.179701435 111 98 97 85 10.99265453 99 91 98 93
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Table 1 presents the field measurement data, which
reveal significant signal variation along the Emir-
Kwasu and Taiwo-Otte routes. These fluctuations in
mobile signal strength are primarily attributed to the
clustered and poorly coordinated settlement patterns of
terrain features along these routes. In contrast, the Post
Office—-ARMTI route exhibited relatively moderate
signal path loss variation, while the GRA-Unilorin
route showed minimal variation in signal strength. The
reduced variations observed along these routes can be
linked to the well-organized and uniformly distributed
terrain features, which promote more consistent signal
propagation along the measurement paths.

Lo R-Squared (R?) Comparison

0.8

0.6

R-Squared (R?)

0.2

%gndnm Forest XGBoost CNN
Machine Learning Models

Figure 5: The Coefficient of Determination of Fit of a

Regression Model.
The CNN model demonstrates the highest R-squared
(R?) value among the evaluated machine learning
models, indicating its superior predictive accuracy and
better fit to the training data. With an R2 value close to
0.80, CNN effectively captures the underlying patterns
in the input data, making it the most reliable model for
path loss prediction in this study.In comparison, the
XGBoost model shows a moderate performance with an
R2 value of approximately 0.38, suggesting that while it
performs reasonably well, its ability to generalize from
the training data is limited compared to CNN. The
Random Forest model follows closely with an R2 of
around 0.45, reflecting a slightly better performance
than XGBoost but still significantly lower than
CNN.Finally, the trend observed in the line graph
confirms that CNN outperforms both XGBoost and
Random Forest, making it the most suitable model for
terrain-informed radio signal prediction tasks in the
given context.

5. Conclusions and Recommendations

This study has demonstrated that the internet
connectivity gap in Africa extends beyond

infrastructural and economic limitations, revealing a
critical but often overlooked factor of terrain-induced
geo-spatial disparities. Through the integration of
satellite imagery, digital elevation models, and machine
learning techniques, it has been shown that the spatial
arrangement of natural and artificial features
significantly influences signal propagation, quality, and
coverage reliability. Irregular terrain features, poor
settlement planning, and uncoordinated infrastructure
development contribute heavily to signal attenuation,
latency, and digital exclusion in many parts of the
continent. Among the models tested, Convolutional
Neural Networks (CNNs) proved most effective in
capturing the complex relationship between terrain and
signal quality, outperforming Random Forest and
XGBoost models in prediction accuracy. This finding
supports the argument for adopting data-driven, terrain-
aware planning approaches in broadband infrastructure
deployment.

To close the internet divide in Africa, policymakers,
urban planners, and telecommunication service
providers must prioritize terrain-informed strategies in
network expansion. This includes the use of geo-spatial
analytics and machine learning models for predictive
signal coverage mapping, proactive infrastructure
placement, and inclusive access designespecially in
underserved rural and topographically challenging
areas.In essence, bridging Africa’s digital divide
requires more than just laying fiber or erecting base
stations; it demands an intelligent coordination between
technology and terrain. By shifting toward terrain-
sensitive and data-driven broadband planning, Africa
can take a decisive step toward achieving digital equity
and sustainable connectivity for all.
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