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under therapies.

In this work, tumor development is investigated through a dynamical systems
approach. The model incorporates tumor cells, Natural Killer (NK) cells, dendritic
cells, CD8+T cells, and circulating lymphocytes. The framework is expressed as a
nonlinear system of ordinary differential equations, which is solved using the finite
difference method (FDM). In addition, stability of the system is analyzed for two
distinct cases: the equilibrium points without therapies and the equilibrium points
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1. Introduction

Tumor growth arises from uncontrolled cell proliferation, loss
of regulatory mechanisms such as apoptosis and cell cycle
checkpoints, and continuous interaction with the tissue
microenvironment[1]. Unlike normal cells, tumor cells avoid
regulatory mechanisms such as apoptosis and immune
surveillance, allowing them to expand rapidly and attack
neighboring tissues. The growth of tumors is often described
using mathematical models, such as the exponential,
logistic[2], and Gompertz functions, which capture different
phases of cancer development ranging from rapid initial
expansion to slower, resource-limited progression. In addition
to intrinsic cellular mechanisms, tumor progression is
strongly influenced by immune responses, nutrient
availability, angiogenesis, and therapeutic interventions like
chemotherapy and immunotherapy[3]. Understanding these
dynamics through both experimental and mathematical

approaches is essential for predicting tumor behavior,
optimizing treatment strategies, and improving patient
outcomes.

A mathematical model was created by De Pillis et al.[1],
[3], [4] to examine tumor growth when immunotherapy and
chemotherapy are administered together. Their work used
differential equations to explore the interactions between
tumor cells, immune responses, and treatment outcomes.
Similarly, Unni and Seshaiyer [5] developed a model
incorporating tumor cell interactions, immunological
responses, and drug interventions to study tumor dynamics.
Their differential equation framework highlighted the roles of
CD8+ T cells, dendritic cells [6], and natural killer (NK) cells
in controlling tumor development, showing that combined
immunotherapy and chemotherapy can effectively reduce
tumor size and improve therapeutic outcomes.
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In another study, Wang [7], discussed several
mathematical models of tumor progression, including the
logistic [2], Gompertz, and exponential equations. These
models have been used to estimate the impact of therapies
such as chemotherapy and to predict cancer progression, with
the choice of growth model shown to be critical for accurate
therapy prediction and optimization[3]. Likewise, Ira et al. [8]
employed differential equations to analyze tumor progression
under treatment, focusing on the interactions among the
immune system, chemotherapy, and tumor cells. Their
findings revealed that while high chemotherapy doses
initially reduce tumor size effectively, the rate of reduction
slows over time.

Logistic growth patterns were further investigated by
Tsoularis and Wallace [9], who extended the classical
Verhulst model by adding parameters to improve predictive
accuracy. Their results indicated that logistic models can
successfully describe real-world biological growth, including
tumor development. Building on this line of research, other
models have specifically examined tumor—immune
interactions, focusing on CD8+ T cells and NK cells, and
incorporating possible vaccination effects, again using
differential equations to capture tumor—immune dynamics

[1].

Additional approaches have modeled tumor progression
from a population dynamics perspective, employing ordinary
differential equations (ODESs) to assess how radiation and
repair mechanisms influence tumor lifespan[5]. Control
oriented frameworks have also been proposed, such as those
that apply optimal control theory to chemotherapy modeling
[11], with the aim of reducing tumor size while minimizing
harm to healthy cells [6].

2. Main Work

Beyond these, studies have investigated the statistical
behavior of tumor growth models. For example, the logistic
and Gompertz functions were analyzed under multiplicative
and additive error factors to evaluate their robustness in
representing biological growth across different contexts [10].
Broader reviews have also synthesized multiple modeling
approaches to forecast tumor progression and guide treatment
strategies [6].

Hybrid approaches have emerged as well, such as
structural equation modeling (SEM) frameworks that
combine logistic and constrained exponential growth
functions [2], which have been compared against independent
logistic and exponential models [11], [12]. Other works apply
formal reaction Kkinetics to tumor dynamics, using
experimental data to validate models and optimize treatment
responses[13], [14].

Alternative perspectives include stochastic individual-
based models (IBMs) that simulate birth, death, and
movement processes to capture emergent population
dynamics, with applications extending to cancer modeling as
well as human population dispersal[15]. Finally, at the
immunological level, studies of the NKG2D receptor and its
ligands Rael and H60 have demonstrated how tumor
immunity can be promoted by stimulating CD8+ T cells and
NK cells, suggesting promising directions for cancer
immunotherapy [14], [16], [17].

The rest of the paper is organized as follows: Section 2
explores the mathematical model of tumor growth; Section 3
describes the stability of the proposed model. Section 4
contains numerical solutions. Finally, Section 5summarizes
findings and discusses possible future research.

By integrating C compartment, and introducing some modification in the mathematical model of[8],our developed model is

expressed as:

dT
—=aT(1 — bT) — (c.1N + jD + kL+ Ky M)T

dt
= C+glNTA2 T —1,D+ KyM+ e)N
- ST e @ 1 N )
L . PLI ,
= N+ nCHRD = M)T — uNLA2 + K, ML —iL
dc
=« — (BC + K.M)C
dMm
— = vyt — I, M

dl
E = UI (t) - 151
The first equation of the model describes the dynamics of tumor cells, which follow logistic growth. Their population is suppressed

through interactions with Natural Killer (NK) cells, dendritic cells, and cytotoxic T (CD8+T) cells at constant rates ci,j and Kk,
respectively. In addition, chemotherapy drugs contribute to tumor cell reduction. The second equation governs NK cells, which are
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produced at a constant source rate s; in association with circulating lymphocytes. These cells are diminished through interactions
with tumor cells, dendritic cells, and chemotherapy drugs at constant rates c,,11 and K.

The dendritic cells are activated only in the presence of tumor cells and are produced at a constant rate of s, together with
circulating lymphocytes. Their depletion occurs due to interactions with NK cells and CD8+T cells, as well as through
chemotherapy and natural death, at constant ratesfy,l»,I3 and Kp. CD8+T cells, in turn, are stimulated by the interaction of dendritic
and NK cells with tumor cells, leading to their proliferation. They are, however, eliminated by chemotherapy when inactive, and
destroyed through interactions with tumor cells.

Circulating lymphocytes are supplied at a constant rate a,but are reduced by chemotherapy and natural death. Finally, the last
two equations describe the concentrations of the chemotherapy drug M and the immunotherapy drug I within the body.

Table: List of parameters with description and values

Parameters Description Values
51 Source term of NK cell 1.3e4
S, Source term of Dendritic cell 480
K Killing rate of tumor cell 0.1
Ky Killing rate of NK cell 0.1
Ky Killing rate of Dendritic cell 0.1
K, Killing rate of cytotoxic lymphocytes 0.1
K. Killing rate of circulating lymphocytes 0.1
a Tumor growth rate 0.431

b Tumor growth declaration rate 2.17¢-8
o Interaction between tumors and NK cell 3.5e-6
g Decay rate of D cell 0.24
h Interaction rate between tumor cells and cytotoxic cells 2.4
u Elimination rate of cytotoxic cells 2.8e-8
I Interaction between dendritic cells and natural killer cells le-6
fi Interaction between cytotoxic cells and dendritic cells le-8
f> Activation rate of cytotoxic cells 0.01
91 Proliferation rate of natural killer cell 2e4
hy Steepness of natural killer cell 0.16
P Activeness of cytotoxic cells due to | 1.9
gi Steepness of cytotoxic cell 2.4
L Competitionrate 4.0e-4
o Competition between T cells and natural killer cells le-7
I Competition between Tcells and dendritic cells 0

i Natural decay rate 2

Ji Competition between T cells and D cells le-7
vy Source term of | 1
Vi Source term of M 1
ly Chemotherapy effect used 0.5
k Competition between T cells and cytotoxic cells le-7
ls Immunotherapy effect used 0.4
n Natural decay rate 412
a Source term 7

B Decay term 10

3. Stability

3.1 Stability Analysis without Therapies

3.1.1 Tumor Free Equilibrium Points
We analyze the stability of the given system, for which we consider the following:
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dir _dN dD dL dC _
dt —dt dt dt dt
Based on this consideration, we obtain the following system of nonlinear equations, whose solution yields the tumorfree equilibrium
point.
0 =alT(@ — bT) — (¢, N + jD + k)T

2
—— — (T — 1D+ e)N

0&=5,C - (iL+1,N—-LT+ g)D
0 = f, DT — hLT — uNL®> + (n N + r, O)T — iL
0=a —-pC.
Employing the parameter set listed in Table 1, the nonlinear system is solved numerically to determine the equilibrium
point(T*,N*,D*,L*,C*) . The computed values corresponding to the tumor-free equilibrium are presented below

T =0,
N* = 11978.3118,
D* = 21.2005,
L' =0,
c* = 0.22
The associated Jacobian matrix is given by:
—0.0255 0.0075 0 13
—0.0906 —0.0302 —0.0226 0.048
0 0 —0.02 0
0 0 0 —0.007
The eigenvalues are
—0.2424,
—5.0313,
—0.02,
—-0.9,

Since all eigenvalues have negative real parts, the system is stable according to the eigenvalue stability criterion.
To further verify stability, a test was performed by varying one parameter at a time while keeping the remaining parameters
fixed at their baseline values from Table 1.

3.1.2 Tumor Present Equilibrium Points

To determine the tumor-present equilibrium of the dynamical system, we follow steps analogous to the previous case:
dl_dN dD dL dC
dt — dt dt dt dt
The resulting system of nonlinear equations is given by:
0 =aT( - bT) — (¢4 N + jD + k)T
g1N T?
hy + T?
0=s,C—-fiL+1LN—-1T+ g)D
0 = f, DT — hLT — uNL*2 + (n N + 1, CO)T — iL
0 =a —pfC.
Numerical solution of this nonlinear system, with parameter values taken from Table 1, yields the equilibrium
point(T*,N*,D*,L*,C*)..

0=51C+ —(CZT—11D+6)N

T =0, N* = 11978.3118, D* = 21.200,

L =0,
C* = 0.222.
The Jacobian matrix associated with this systemis:

—43.268e — 10 —16.192e — 07 —46.262e —9 —46.262e—9 0

[ 47.473e+07  —2.3999%¢ -1 1.2314e—1 0 13e+5 l
0 —5.5415e — 3 —4.9497 —13.854e — 08  4.80

l 1.3853e +1 —2.8749e — 25 4.6262e — 05 —2.0001e4 0 J
0 0 0 0 —-7.000

The eigenvalues associated with this system are:
—0.120, —0.120, —49.4970,
—0.037330, —0.90,
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Since all eigenvalues possess negative real parts, the eigenvalue stability criterion guarantees that the system is stable.

Stability of the system was examined through a one-at-a-time parameter variation, with all remaining parameters held at their
baseline values given in Table 1.

3.2 Stability Analysis with Therapies

To examine the stability of the system, we consider the following:
dil ' dN dD dL dC dM dI _
dt dt dt dt dt dt dt

From this consideration, we obtain the following system of nonlinear equations, whose solution yields the equilibrium point.
0 =aT(1 — bT) — (c_1N + jD + kL — Ky M)T

g1 NT"2
0= 51C+m— (T — uD+ KyM+ e)N
0=s,C—-—(fL+1L,N-01LT+ KyM+ g)D

P LI
gr t+ 1
0 =a—(BC+ KM)C
0=vy@®) —I,M
0=, (t) — 51
By solving the nonlinear system numerically with the parameter set from Table 1, we obtain the equilibrium
point(T*,N*,D*,L*,C*,M*,I*). The corresponding component values are:"

0= (N + r,C+f,D— hL)T — uNL"2 + — K, ML — iL

T* = 0.00758,
N* = 123142.795,
D* = 2.1550,
L* = 0.00427,
c* = 0.222,
M* = 2.000,
I* = 2.500.
The associated Jacobian matrix is
0 —2.70e — 14 —1le—15 —-1e—15 0 4.66el 0
7.79 —2.40e-7 743e—2 0 130e—13 —4.46e5 0
0 —5.54e—9 —495e—5 —-1.39¢—13 480e—4 1.45e2 0
1.39¢e—=7 0 759 —11 —2e—4 0 —484el 0
0 0 0 0 =7.0e—6 0 0
0 0 0 00 -9 -7 0
0 000 0 0 —1.0e—-7

The eigenvalues associated with this system are:
—0.1200, —0.1200, —4.94971, -0.0382,
—9.000, —5.000, —4.000,
Since all eigenvalues possess negative real parts, the eigenvalue stability criterion guarantees that the system is stable.
The system was tested by varying one parameter at a time, while keeping all others fixed at their baseline values from Table 1.

4. Numerical Simulation

The numerical simulation of the tumor immune model illustrates the interaction between tumor cells, immune populations, and
therapeutic interventions. The results show that tumor cells initially expand, reach a short-lived peak, and are subsequently
eliminated due to immune and therapeutic pressures. NK cells increase steadily throughout the simulation, attaining a high saturation
level that reflects their persistent surveillance role. Dendritic cells and cytotoxic T cells both exhibit transient growth, peaking early
in response to tumor presence and then declining once the tumor burden diminishes, with dendritic cells stabilizing at a moderate
level while cytotoxic T cells decay to near zero. Circulating lymphocytes rise monotonically and approach a stable equilibrium,
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providing constant immune support. Meanwhile, chemotherapy and immunotherapy inputs increase rapidly, representing steady

external treatment supplies.

These dynamics highlight the typical immune tumor interaction shaped by combined natural and therapeutic responses. The
transient activation of dendritic and cytotoxic cells, the sustained expansion of NK cells, and the eventual stabilization of therapeutic
agents together ensure the system converges to a tumor free steady state.
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ﬂme[)ynamics of tumor-immune interactions with therapeutic interventions.

5. Conclusion

In this formulation, circulating lymphocytes (C) are explicitly
incorporated into the tumor—immune-therapy framework,
introducing additional regulatory interactions that more
realistically capture immune support dynamics. The modified
equations couple C with NK cells, dendritic cells, and
cytotoxic lymphocytes, thereby strengthening their activation
pathways, while also including its natural production and
decay. Numerical solutions obtained using the finite
difference method demonstrate that the system exhibits stable
tumor elimination under combined immune and therapeutic
effects, with circulating lymphocytes providing sustained
baseline stimulation. Furthermore, stability analysis based on
the eigenvalues of the Jacobian matrix confirms that the
equilibrium remains locally stable when all eigenvalues
possess negative real parts, ensuring convergence to a tumor-
free steady state. This integration of circulating lymphocytes
not only enriches the biological realism of the model but also
emphasizes their role in maintaining long-term immune
surveillance and enhancing therapeutic outcomes.
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