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In this work, tumor development is investigated through a dynamical systems 

approach. The model incorporates tumor cells, Natural Killer (NK) cells, dendritic 

cells, CD8+T cells, and circulating lymphocytes. The framework is expressed as a 

nonlinear system of ordinary differential equations, which is solved using the finite 

difference method (FDM). In addition, stability of the system is analyzed for two 

distinct cases: the equilibrium points without therapies and the equilibrium points 

under therapies. 
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1. Introduction 

Tumor growth arises from uncontrolled cell proliferation, loss 

of regulatory mechanisms such as apoptosis and cell cycle 

checkpoints, and continuous interaction with the tissue 

microenvironment[1]. Unlike normal cells, tumor cells avoid 

regulatory mechanisms such as apoptosis and immune 

surveillance, allowing them to expand rapidly and attack 

neighboring tissues. The growth of tumors is often described 

using mathematical models, such as the exponential, 

logistic[2], and Gompertz functions, which capture different 

phases of cancer development ranging from rapid initial 

expansion to slower, resource-limited progression. In addition 

to intrinsic cellular mechanisms, tumor progression is 

strongly influenced by immune responses, nutrient 

availability, angiogenesis, and therapeutic interventions like 

chemotherapy and immunotherapy[3]. Understanding these 

dynamics through both experimental and mathematical  

 

approaches is essential for predicting tumor behavior, 

optimizing treatment strategies, and improving patient 

outcomes. 

A mathematical model was created by De Pillis et al.[1], 

[3], [4] to examine tumor growth when immunotherapy and 

chemotherapy are administered together. Their work used 

differential equations to explore the interactions between 

tumor cells, immune responses, and treatment outcomes. 

Similarly, Unni and Seshaiyer [5] developed a model 

incorporating tumor cell interactions, immunological 

responses, and drug interventions to study tumor dynamics. 

Their differential equation framework highlighted the roles of 

CD8+ T cells, dendritic cells [6], and natural killer (NK) cells 

in controlling tumor development, showing that combined 

immunotherapy and chemotherapy can effectively reduce 

tumor size and improve therapeutic outcomes. 
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In another study, Wang [7], discussed several 

mathematical models of tumor progression, including the 

logistic [2], Gompertz, and exponential equations. These 

models have been used to estimate the impact of therapies 

such as chemotherapy and to predict cancer progression, with 

the choice of growth model shown to be critical for accurate 

therapy prediction and optimization[3]. Likewise, Ira et al. [8] 

employed differential equations to analyze tumor progression 

under treatment, focusing on the interactions among the 

immune system, chemotherapy, and tumor cells. Their 

findings revealed that while high chemotherapy doses 

initially reduce tumor size effectively, the rate of reduction 

slows over time. 

Logistic growth patterns were further investigated by 

Tsoularis and Wallace [9], who extended the classical 

Verhulst model by adding parameters to improve predictive 

accuracy. Their results indicated that logistic models can 

successfully describe real-world biological growth, including 

tumor development. Building on this line of research, other 

models have specifically examined tumor–immune 

interactions, focusing on CD8+ T cells and NK cells, and 

incorporating possible vaccination effects, again using 

differential equations to capture tumor–immune dynamics 

[1]. 

Additional approaches have modeled tumor progression 

from a population dynamics perspective, employing ordinary 

differential equations (ODEs) to assess how radiation and 

repair mechanisms influence tumor lifespan[5]. Control 

oriented frameworks have also been proposed, such as those 

that apply optimal control theory to chemotherapy modeling 

[11], with the aim of reducing tumor size while minimizing 

harm to healthy cells [6]. 

Beyond these, studies have investigated the statistical 

behavior of tumor growth models. For example, the logistic 

and Gompertz functions were analyzed under multiplicative 

and additive error factors to evaluate their robustness in 

representing biological growth across different contexts [10]. 

Broader reviews have also synthesized multiple modeling 

approaches to forecast tumor progression and guide treatment 

strategies [6]. 

Hybrid approaches have emerged as well, such as 

structural equation modeling (SEM) frameworks that 

combine logistic and constrained exponential growth 

functions [2], which have been compared against independent 

logistic and exponential models [11], [12]. Other works apply 

formal reaction kinetics to tumor dynamics, using 

experimental data to validate models and optimize treatment 

responses[13], [14]. 

Alternative perspectives include stochastic individual-

based models (IBMs) that simulate birth, death, and 

movement processes to capture emergent population 

dynamics, with applications extending to cancer modeling as 

well as human population dispersal[15]. Finally, at the 

immunological level, studies of the NKG2D receptor and its 

ligands Rae1 and H60 have demonstrated how tumor 

immunity can be promoted by stimulating CD8+ T cells and 

NK cells, suggesting promising directions for cancer 

immunotherapy [14], [16], [17]. 

The rest of the paper is organized as follows: Section 2 

explores the mathematical model of tumor growth; Section 3 

describes the stability of the proposed model. Section 4 

contains numerical solutions. Finally, Section 5summarizes 

findings and discusses possible future research. 

 

2.  Main Work 

By integrating C compartment,  and introducing some modification in the mathematical model of[8],our developed model is 

expressed as:  

 

𝑑𝑇

𝑑𝑡
=  𝑎𝑇(1 −  𝑏𝑇)  − (𝑐_1 𝑁 +  𝑗𝐷 +  𝑘𝐿 + 𝐾𝑇  𝑀)𝑇 

𝑑𝑁

𝑑𝑡
=   𝑠1𝐶 + 

𝑔1 𝑁 𝑇^2

ℎ_1 +  𝑇^2
 − (𝑐2 𝑇 − 𝑙1 𝐷 + 𝐾𝑁  𝑀 +  𝑒)𝑁 

𝑑𝐷

𝑑𝑡
=  𝑠2 𝐶 − (𝑓1  𝐿 +  𝑙2 𝑁 − 𝑙3 𝑇 + 𝐾𝐷  𝑀 +  𝑔)𝐷  

𝑑𝐿

𝑑𝑡
=  (𝑟1  𝑁 + 𝑟2 𝐶 + 𝑓2𝐷 −  ℎ𝐿)𝑇 −  𝑢𝑁 𝐿^2 +

𝑃𝐼  𝐿 𝐼

𝑔𝐼  +  𝐼
−                               𝐾𝐿  𝑀𝐿 −  𝑖𝐿 

𝑑𝐶

𝑑𝑡
= 𝛼 − (𝛽𝐶 + 𝐾𝐶𝑀)𝐶 

𝑑𝑀

𝑑𝑡
=   𝑣𝑀(𝑡)  − 𝑙4 𝑀 

𝑑𝐼

𝑑𝑡
=  𝑣𝐼 (𝑡)  − 𝑙5 𝐼 

The first equation of the model describes the dynamics of tumor cells, which follow logistic growth. Their population is suppressed 

through interactions with Natural Killer (NK) cells, dendritic cells, and cytotoxic T (CD8+T) cells at constant rates c1,j and k, 

respectively. In addition, chemotherapy drugs contribute to tumor cell reduction. The second equation governs NK cells, which are 
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produced at a constant source rate s1 in association with circulating lymphocytes. These cells are diminished through interactions 

with tumor cells, dendritic cells, and chemotherapy drugs at constant rates c2,l1 and KN. 

The dendritic cells are activated only in the presence of tumor cells and are produced at a constant rate of s2 together with 

circulating lymphocytes. Their depletion occurs due to interactions with NK cells and CD8+T cells, as well as through 

chemotherapy and natural death, at constant ratesf1,l2,l3 and KD. CD8+T cells, in turn, are stimulated by the interaction of dendritic 

and NK cells with tumor cells, leading to their proliferation. They are, however, eliminated by chemotherapy when inactive, and 

destroyed through interactions with tumor cells. 

Circulating lymphocytes are supplied at a constant rate 𝛼,but are reduced by chemotherapy and natural death. Finally, the last 

two equations describe the concentrations of the chemotherapy drug M and the immunotherapy drug I within the body. 

Table: List of parameters with description and values 

Parameters Description Values 

𝑠1 Source term of NK cell 1.3e4 

𝑠2 Source term of Dendritic cell 480 

𝐾𝑇  Killing rate of tumor cell 0.1 

𝐾𝑁 Killing rate of NK cell 0.1 

𝐾𝐷 Killing rate of Dendritic cell 0.1 

𝐾𝐿 Killing rate of cytotoxic lymphocytes 0.1 

𝐾𝐶 Killing rate of circulating lymphocytes 0.1 

𝑎 Tumor growth rate 0.431 

𝑏 Tumor growth declaration rate 2.17e-8 

𝑐1 Interaction between tumors and NK cell    3.5e-6 

𝑔 Decay rate of D cell     0.24 

ℎ Interaction rate between tumor cells and cytotoxic cells 2.4 

𝑢 Elimination rate of cytotoxic cells 2.8e-8 

𝑙1 Interaction between dendritic cells and natural killer cells 1e-6 

𝑓1 Interaction between cytotoxic cells and dendritic cells 1e-8 

𝑓2  Activation rate of cytotoxic cells 0.01 

𝑔1 Proliferation rate of natural killer cell 2e4 

ℎ1 Steepness of natural killer cell 0.16 

𝑃𝐼  Activeness of cytotoxic cells due to I 1.9 

𝑔𝐼 Steepness of cytotoxic cell 2.4 

𝑙2 Competitionrate 4.0e-4 

𝑐2 Competition between T cells and natural killer cells 1e-7 

𝑙3 Competition between Tcells and dendritic cells 0 

𝑖 Natural decay rate 2 

𝑗 Competition between T cells and D cells 1e-7 

𝑣𝐼 Source term of I 1 

𝑣𝑀 Source term of M      1 

𝑙4 Chemotherapy effect used     0.5 

𝑘 Competition between T cells and cytotoxic cells 1e-7 

𝑙5 Immunotherapy effect used     0.4 

𝜂 Natural decay rate 412 

𝛼 Source term 7 

𝛽 Decay term 10 

 

3. Stability 

3.1 Stability Analysis without Therapies 

3.1.1 Tumor Free Equilibrium Points 

We analyze the stability of the given system, for which we consider the following: 
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𝑑𝑇

𝑑𝑡
 =

𝑑𝑁

𝑑𝑡
 =

𝑑𝐷

𝑑𝑡
 =

𝑑𝐿

𝑑𝑡
 =

𝑑𝐶

𝑑𝑡
 =  0. 

Based on this consideration, we obtain the following system of nonlinear equations, whose solution yields the tumorfree equilibrium 

point. 

0 =  𝑎𝑇(1 −  𝑏𝑇)  − (𝑐1 𝑁 +  𝑗𝐷 +  𝑘𝐿)𝑇  

0 =  𝑠1 𝐶 +
𝑔1 𝑁 𝑇2

ℎ1 + 𝑇2
 − (𝑐2 𝑇 − 𝑙1 𝐷 +  𝑒)𝑁  

0 & =  𝑠2 𝐶 − (𝑓1  𝐿 + 𝑙2 𝑁 − 𝑙3 𝑇 +  𝑔)𝐷  

0 =  𝑓2  𝐷𝑇 −  ℎ𝐿𝑇 −  𝑢𝑁𝐿2  + (𝑟1 𝑁 + 𝑟2  𝐶)𝑇 −  𝑖𝐿  

0 = 𝛼 − 𝛽 𝐶. 

Employing the parameter set listed in Table 1, the nonlinear system is solved numerically to determine the equilibrium 

point(𝑇∗, 𝑁∗, 𝐷∗ , 𝐿∗, 𝐶∗) . The computed values corresponding to the tumor-free equilibrium are presented below 

𝑇∗  =  0, 

𝑁∗  =  11978.3118, 

𝐷∗  =  21.2005, 

𝐿∗  =  0, 

𝐶∗  =  0.22 

The associated Jacobian matrix is given by: 

[

−0.0255 0.0075 0 1.3
−0.0906 −0.0302 −0.0226 0.048

0
0

0
0

−0.02
0

0
−0.007

] 

The eigenvalues are 

  −0.2424, 

      −5.0313, 

        −0.02, 

         −0.9, 

Since all eigenvalues have negative real parts, the system is stable according to the eigenvalue stability criterion.  

To further verify stability, a test was performed by varying one parameter at a time while keeping the remaining parameters 

fixed at their baseline values from Table 1. 

3.1.2 Tumor Present Equilibrium Points 

To determine the tumor-present equilibrium of the dynamical system, we follow steps analogous to the previous case: 

𝑑𝑇

𝑑𝑡
 =

𝑑𝑁

𝑑𝑡
 =

𝑑𝐷

𝑑𝑡
 =

𝑑𝐿

𝑑𝑡
 =

𝑑𝐶

𝑑𝑡
=  0. 

The resulting system of nonlinear equations is given by: 

  0 =  𝑎𝑇(1 −  𝑏𝑇)  − (𝑐1 𝑁 +  𝑗𝐷 +  𝑘𝐿)𝑇  

0 =  𝑠1 𝐶 +
𝑔1𝑁 𝑇2

ℎ1  + 𝑇2
 −  ( 𝑐2𝑇 − 𝑙1 𝐷 +  𝑒)𝑁  

0 =  𝑠2 𝐶 − (𝑓1 𝐿 + 𝑙2𝑁 − 𝑙3 𝑇 +  𝑔)𝐷  

0 =  𝑓2  𝐷𝑇 −  ℎ𝐿𝑇 −  𝑢𝑁𝐿^2 + (𝑟1 𝑁 + 𝑟2  𝐶)𝑇 −  𝑖𝐿  

0 = 𝛼 − 𝛽𝐶. 

Numerical solution of this nonlinear system, with parameter values taken from Table 1, yields the equilibrium 

point(𝑇∗, 𝑁∗, 𝐷∗ , 𝐿∗, 𝐶∗):. 

𝑇∗ =  0, 𝑁∗ =  11978.3118,   𝐷∗ =  21.200, 

𝐿∗  =  0, 

𝐶∗  =  0.222. 

The Jacobian matrix associated with this systemis: 

[
 
 
 
 
−43.268e − 10 −16.192e − 07 −46.262e − 9 −46.262e − 9 0
47.473e + 07 −2.3999e − 1 1.2314e − 1 0 1.3𝑒 + 5

0
1.3853

0
𝑒 + 1

−5.5415e − 3
−2.8749e − 25

0

−4.9497
4.6262e − 05  

0

−13.854e − 08
−2.0001e4

0

4.80
0

−7.000]
 
 
 
 

 

The eigenvalues associated with this system are: 

    −0.120,   − 0.120,    − 49.4970, 

      −0.037330,   − 0.90, 
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Since all eigenvalues possess negative real parts, the eigenvalue stability criterion guarantees that the system is stable. 

Stability of the system was examined through a one-at-a-time parameter variation, with all remaining parameters held at their 

baseline values given in Table 1. 

3.2 Stability Analysis with Therapies 

To examine the stability of the system, we consider the following: 

𝑑𝑇

𝑑𝑡
 =  

𝑑𝑁

𝑑𝑡
  =

𝑑𝐷

𝑑𝑡
 =

𝑑𝐿

𝑑𝑡
 =

𝑑𝐶

𝑑𝑡
 =

𝑑𝑀

𝑑𝑡
 =

𝑑𝐼

𝑑𝑡
=  0. 

 

From this consideration, we obtain the following system of nonlinear equations, whose solution yields the equilibrium point. 

     0 =  𝑎𝑇(1 −  𝑏𝑇)  − (𝑐_1 𝑁 +  𝑗𝐷 +  𝑘𝐿 − 𝐾𝑇  𝑀)𝑇 

 0 =   𝑠1𝐶 + 
𝑔1 𝑁 𝑇^2

ℎ_1 +  𝑇^2
 − (𝑐2 𝑇 − 𝑙1 𝐷 + 𝐾𝑁  𝑀 +  𝑒)𝑁 

0 =  𝑠2 𝐶 − (𝑓1  𝐿 + 𝑙2 𝑁 − 𝑙3 𝑇 + 𝐾𝐷  𝑀 +  𝑔)𝐷  

0 =   (𝑟1 𝑁 + 𝑟2  𝐶 + 𝑓2𝐷 −  ℎ𝐿)𝑇 −  𝑢𝑁 𝐿^2 +
𝑃𝐼  𝐿 𝐼

𝑔𝐼  +  𝐼
−                               𝐾𝐿  𝑀𝐿 −  𝑖𝐿 

0 = 𝛼 − (𝛽𝐶 + 𝐾𝐶𝑀)𝐶  

0 =   𝑣𝑀(𝑡)  − 𝑙4 𝑀 

 0 =  𝑣𝐼 (𝑡) − 𝑙5 𝐼 

By solving the nonlinear system numerically with the parameter set from Table 1, we obtain the equilibrium 

point(𝑇∗, 𝑁∗, 𝐷∗ , 𝐿∗, 𝐶∗,𝑀∗, 𝐼∗). The corresponding component values are:" 

𝑇∗ =   0.00758,  

𝑁∗ =  123142.795,   

𝐷∗  =  2.1550, 

𝐿∗  =  0.00427,    

𝐶∗  =  0.222, 

𝑀∗  =  2.000,  

𝐼∗  =  2.500. 

 

The associated Jacobian matrix is  

[
 
 
 
 
 
 
 
 
 
 

0 −2.70𝑒 − 14 −1𝑒 − 15 −1𝑒 − 15 0 4.66𝑒1 0
7.79 −2.40𝑒 − 7 7.43𝑒 − 2 0 1.30𝑒 − 13 −4.46𝑒5 0
0 −5.54𝑒 − 9 −4.95𝑒 − 5 −1.39𝑒 − 13 4.80𝑒 − 4 1.45𝑒2 0

1.39𝑒 − 7 0 7.59𝑒 − 11 −2𝑒 − 4 0 −4.84𝑒1 0
0 0 0 0 −7.0𝑒 − 6 0 0
0 0 0 0 0 −9𝑒 − 7 0

0 0 0 0 0 0 −1.0𝑒 − 7 ]
 
 
 
 
 
 
 
 
 
 

 

 

The eigenvalues associated with this system are: 

  −0.1200, −0.1200,      − 4.94971,    − 0.0382, 

−9.000,     − 5.000,      − 4.000, 

Since all eigenvalues possess negative real parts, the eigenvalue stability criterion guarantees that the system is stable. 

The system was tested by varying one parameter at a time, while keeping all others fixed at their baseline values from Table 1. 

4. Numerical Simulation 

The numerical simulation of the tumor immune model illustrates the interaction between tumor cells, immune populations, and 

therapeutic interventions. The results show that tumor cells initially expand, reach a short-lived peak, and are subsequently 

eliminated due to immune and therapeutic pressures. NK cells increase steadily throughout the simulation, attaining a high saturation 

level that reflects their persistent surveillance role. Dendritic cells and cytotoxic T cells both exhibit transient growth, peaking early 

in response to tumor presence and then declining once the tumor burden diminishes, with dendritic cells stabilizing at a moderate 

level while cytotoxic T cells decay to near zero. Circulating lymphocytes rise monotonically and approach a stable equilibrium, 
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providing constant immune support. Meanwhile, chemotherapy and immunotherapy inputs increase rapidly, representing steady 

external treatment supplies. 

These dynamics highlight the typical immune tumor interaction shaped by combined natural and therapeutic responses. The 

transient activation of dendritic and cytotoxic cells, the sustained expansion of NK cells, and the eventual stabilization of therapeutic 

agents together ensure the system converges to a tumor free steady state. 

 

5. Conclusion 

In this formulation, circulating lymphocytes (C) are explicitly 

incorporated into the tumor–immune–therapy framework, 

introducing additional regulatory interactions that more 

realistically capture immune support dynamics. The modified 

equations couple C with NK cells, dendritic cells, and 

cytotoxic lymphocytes, thereby strengthening their activation 

pathways, while also including its natural production and 

decay. Numerical solutions obtained using the finite 

difference method demonstrate that the system exhibits stable 

tumor elimination under combined immune and therapeutic 

effects, with circulating lymphocytes providing sustained 

baseline stimulation. Furthermore, stability analysis based on 

the eigenvalues of the Jacobian matrix confirms that the 

equilibrium remains locally stable when all eigenvalues 

possess negative real parts, ensuring convergence to a tumor-

free steady state. This integration of circulating lymphocytes 

not only enriches the biological realism of the model but also 

emphasizes their role in maintaining long-term immune 

surveillance and enhancing therapeutic outcomes. 
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