
IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 38

IKR Journal of Engineering and Technology

(IKRJET)
Journal homepage: https://ikrpublishers.com/ikrjet/

Volume-2, Issue-1 (January-February) 2026 ISSN: 3107-7331 (Online)

Intrusion Detection System (IDS) on Amazon Web Services (AWS)

Using Machine Learning

Mohammed Ahmed Abdullah Al-Anzi
*

Prince Sattam bin Abdulaziz University

DOI:10.5281/zenodo.18267556

A R T I C L E I N F O ABSTRACT Original Research Article

Article history:
Received : 03-01-2026

Accepted : 10-01-2026

Available online : 16-01-2026

Intrusion Detection Systems (IDS) are critical for maintaining security in cloud

computing environments, where dynamic infrastructure and multi-tenancy present

unique challenges. This research implements and evaluates a machine learning-based

IDS specifically designed for Amazon Web Services (AWS) environments using the

CSE-CIC-IDS2018 dataset. Three machine learning algorithms—Isolation Forest,

One-Class Support Vector Machine (SVM), and Autoencoder neural networks—were

systematically compared based on standard performance metrics including accuracy,

precision, recall, F1-score, and Equal Error Rate (EER). The Autoencoder model

demonstrated superior performance with 96.8% accuracy and 3.3% EER, significantly

outperforming traditional methods. Furthermore, we propose a comprehensive AWS-

native deployment architecture that integrates the trained models with cloud services

including Amazon SageMaker, Lambda, CloudTrail, and Security Hub, creating a

scalable, serverless IDS solution capable of real-time threat detection and automated

response. This study contributes to the field of cloud security by providing both

empirical validation of machine learning approaches for anomaly detection and

practical implementation guidelines for AWS environments.

Keywords: Intrusion Detection System, Cloud Security, Machine Learning, AWS

Cloud Computing, Anomaly Detection.

Copyright©2026 The Author(s):
This is an open-access article
distributed under the terms of the
Creative Commons Attribution 4.0

International License (CC BY-NC)
which permits unrestricted use,
distribution, and reproduction in any
medium for non-commercial use

provided the original author and
source are credited.
Citation: Al-Anzi, M. A. A. (2026).
Intrusion Detection System (IDS) on
Amazon Web Services (AWS) Using
Machine Learning. IKR Journal of
Engineering and Technology

(IKRJET), 2(1), 38-46.

*Corresponding author: Mohammed Ahmed Abdullah Al-Anzi
Prince Sattam bin Abdulaziz University

1. Introduction to Anomaly Detection

(IDS) in Cloud Security

Anomaly detection is essential for securing cloud

environments as organizations migrate critical workloads.

While traditional IDS solutions exist, they often lack cloud-

native integration, scalability, and real-time adaptability. This

study addresses these gaps by proposing a novel, AWS-native

IDS that leverages machine learning within a serverless

architecture, providing automated detection and response

capabilities not fully realized in prior works.

1.1. Significance of Anomaly Detection in Cloud

Security

Early Threat Detection: Enables prompt response to security

threats [5], allowing organizations to respond promptly and

mitigate risks before they escalate. Protection of Sensitive

Data: With the proliferation of sensitive data stored and

processed in the cloud, anomaly detection helps safeguard

against unauthorized access, data breaches, and leakage of

confidential information. Maintaining Service Availability:

By detecting anomalous activities that may indicate attempts

to disrupt services or launch denial-of-service (DoS) attacks,

IDS systems contribute to maintaining the availability and

reliability of cloud services. Compliance and Regulatory

Requirements: Compliance with industry regulations and data

protection laws is paramount for organizations operating in

the cloud. Anomaly detection assists in meeting compliance

requirements by ensuring adherence to security standards and

protocols.

Significance of Anomaly Detection in Cloud Security cabe

summarized in the following:

https://ikrpublishers.com/ikrjet/

IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 39

 Early Threat Detection: Enables prompt response to

security threats [5].

 Data Protection: Safeguards against unauthorized

access and breaches.

 Service Availability: Maintains reliability by detecting

DoS attempts.

 Regulatory Compliance: Helps meet security standards

and protocols.

1.2. Common Threats and Attacks in Cloud

Computing Environments

 Data Breaches

 Malware Infections

 Insider Threats

 Denial-of-Service (DoS) Attacks

 Credential Theft

 Man-in-the-Middle (MitM) Attacks

 Evasion Techniques

1.3. Dataset Explanation: CSE-CIC-IDS2018

While the CSE-CIC-IDS2018 dataset [1,8] is not AWS-

specific, it provides a comprehensive benchmark for intrusion

detection research. To address AWS-specificity, we extended

the dataset simulation by mapping features to AWS-native

log sources (VPC Flow Logs, CloudTrail) in our deployment

architecture.

The CSE-CIC-IDS2018 dataset is a comprehensive and widely used dataset in the field of cybersecurity, specifically for evaluating

intrusion detection systems (IDS)[1,8]. It was created by the Canadian Institute for Cybersecurity (CIC) to facilitate research and

development in the detection and mitigation of cyber threats. Here's a detailed description of the dataset:

1.3.1. Structure

The dataset is typically provided in CSV (Comma Separated

Values) format, making it easily accessible and compatible

with various data analysis tools and platforms. It consists of a

large number of features (columns) representing different

attributes and characteristics of network traffic and system

activities. These features include but are not limited to:

 Source and destination IP addresses

 Protocol type (e.g., TCP, UDP)

 Packet size and timing information

 Network flow statistics

 Payload characteristics

 Attack labels indicating whether a network flow is

benign or malicious

IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 40

Each row in the dataset represents an individual network flow

or communication session captured during a specific time

period. The dataset typically contains a significant number of

instances, providing a diverse and representative sample of

network traffic.

1.3.2. Characteristics

1. The CSE-CIC-IDS2018 dataset is characterized by its

large-scale nature, containing millions of network flow

instances captured from diverse network environments.

2. The dataset is derived from real-world network traffic

captured from operational networks, ensuring its

relevance and authenticity for evaluating IDS systems in

practical settings.

3. Like many real-world datasets, the CSE-CIC-IDS2018

dataset exhibits class imbalance, with a larger number of

benign instances compared to malicious instances. This

imbalance presents challenges for machine learning

algorithms in effectively distinguishing between normal

and anomalous network behavior [8].

4. The dataset covers a wide range of cyber attacks and

intrusion scenarios, including but not limited to denial-of-

service (DoS), distributed denial-of-service (DDoS),

malware infections, SQL injections, and reconnaissance

activities.

5. Each instance in the dataset is labeled with a ground truth

indicating whether it represents normal (benign) network

behavior or malicious activity. These labels are

instrumental for supervised learning approaches in

training and evaluating IDS models.

1.4. Statement of the Problem

Cloud computing environments face unique security

challenges due to their dynamic, scalable, and multi-tenant

nature. Traditional intrusion detection systems (IDS) are

often ill-suited for cloud infrastructures, as they struggle to

handle the scale, complexity, and real-time demands of cloud

networks. Key issues include:

 Inability to efficiently process large volumes of network

traffic and system logs in real-time.

 Lack of adaptability to dynamic cloud features such as

elastic scaling, virtualization, and diverse network

topologies.

 High rates of false positives and false negatives, which

undermine detection reliability.

 Limited integration with cloud-native platforms and

security frameworks.

 Absence of scalable, automated response mechanisms

tailored for cloud environments.

Consequently, there is a pressing need for an adaptive,

scalable, and cloud-native IDS capable of detecting and

mitigating cyber threats, such as unauthorized access, data

breaches, and denial-of-service attacks, in real time, while

minimizing operational overhead and maximizing detection

accuracy.

1.5. Objectives

The primary aim of this research is to design, implement, and

evaluate a machine learning-based Intrusion Detection

System (IDS) specifically optimized for cloud computing

environments. The study seeks to achieve the following

objectives:

 Develop an AWS-native, scalable IDS using ML.

 Compare models with statistical validation.

 Deploy a serverless, real-time detection pipeline.

 Ensure reproducibility and practical implementation.

2. Methodology/ System Model

The proposed Intrusion Detection System (IDS) for cloud

security is designed to effectively detect and mitigate various

cyber threats and attacks in real-time. The system model

comprises several components, including data collection,

preprocessing, feature extraction, anomaly detection, and

response mechanisms. Below is an analysis of the proposed

IDS system, including block diagrams, flowcharts, and

algorithms used [8].

3. Data Collection

3.1. Preprocessing

Block Diagram: The data collection module gathers network

traffic data, system logs, and other relevant information from

cloud environments. This includes data from network

devices, virtual machines, containers, and application logs.

Flowchart: The flowchart illustrates the process of collecting

raw data from various sources, including network sensors,

host-based agents, and log files. Data collection methods may

include packet sniffing, NetFlow analysis, log scraping, and

API integration.

Block Diagram: The preprocessing module cleanses,

normalizes, and preprocesses the raw data to prepare it for

analysis. This includes data cleaning, missing value

imputation, feature scaling, and transformation.

IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 41

Flowchart: The flowchart depicts the steps involved in

preprocessing the data, such as removing outliers, handling

missing values, encoding categorical variables, and

standardizing numerical features.

3.2. Feature Extraction

Block Diagram: The feature extraction module extracts

relevant features from the preprocessed data to represent

network behavior and system activities. This may include

statistical features, traffic patterns, protocol-specific

attributes, and temporal characteristics.

Flowchart: The flowchart outlines the process of feature

extraction, which involves selecting informative features,

reducing dimensionality, and generating feature vectors for

input to the anomaly detection algorithms.

3.3. Anomaly Detection

For anomaly detection, we implemented three machine

learning approaches: Isolation Forest [2], One-Class SVM

[3], and Autoencoder neural networks [4]. These models were

selected based on their proven effectiveness in anomaly

detection literature [10].

Block Diagram: The anomaly detection module applies

machine learning algorithms and anomaly detection

techniques to identify deviations from normal behavior. This

includes supervised, unsupervised, and semi-supervised

learning approaches such as Isolation Forest, One-Class

SVM, and Autoencoder-based methods.

Flowchart: The flowchart illustrates the workflow of the

anomaly detection process, including model training,

anomaly scoring, thresholding, and decision-making.

Anomalies detected beyond a certain threshold are flagged as

potential security incidents.

3.4. Response Mechanisms

Block Diagram: The response mechanisms module

implements response actions based on the severity and type

of detected anomalies. This may include alerting system

administrators, blocking suspicious traffic, quarantining

compromised hosts, and updating firewall rules.

Flowchart: The flowchart depicts the steps involved in

responding to detected anomalies, including alert generation,

incident triage, mitigation strategies, and incident reporting.

3.5. Simulation/Implementation

The models were trained using scikit-learn [6] and

TensorFlow [7] libraries. Hyperparameter tuning employed

grid search cross-validation, a standard optimization

technique [6].

The IDS system was implemented using Python

programming language along with popular machine learning

libraries such as scikit-learn, TensorFlow, and Keras. The

implementation involved several stages, including data

preprocessing, model training, evaluation, and deployment.

Below are the details on how the IDS system was

implemented or simulated using the selected machine

learning models.

3.6. Data Preprocessing

The raw network traffic data from the CSE-CIC-IDS2018

dataset was preprocessed to handle missing values, normalize

numerical features, and encode categorical variables.

Techniques such as Min-Max scaling, Standard scaling, and

One-Hot encoding were applied to preprocess the data and

prepare it for model training.

Model Selection

IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 42

Several machine learning models were considered for anomaly detection, including Isolation Forest, One-Class SVM, and

Autoencoder-based neural networks.

Each model's suitability for the IDS task was evaluated based on factors such as scalability, interpretability, and detection

performance.

Model Training

The selected machine learning models were trained on the preprocessed data using appropriate training algorithms and

hyperparameters.

Cross-validation techniques such as k-fold cross-validation were employed to ensure robust model training and performance

estimation.

Evaluation Metrics

Performance metrics such as accuracy, precision, recall, F1-score, and the Equal Error Rate (EER) were used to evaluate the

effectiveness of the IDS system.

Confusion matrices and ROC curves were also utilized to assess model behavior and detection capabilities.

IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 43

Hyperparameter Tuning

Hyperparameters of the machine learning models were fine-tuned using techniques like grid search or random search to optimize

performance. Grid search cross-validation was employed to find the best combination of hyperparameters for each model.

Model Evaluation

The trained models were evaluated on a separate test dataset to assess their generalization performance and robustness.

Performance metrics were calculated on the test set to measure the models' ability to detect anomalies accurately and minimize false

positives.

Deployment

Once the models were trained and evaluated satisfactorily, they were deployed in a real-world cloud environment or simulated

environment for continuous monitoring and threat detection.The deployment phase involved integrating the trained models with

existing security infrastructure and establishing alerting and response mechanisms.

IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 44

4. Results and Analysis

In this section, we present a comparative analysis of different machine learning models based on performance metrics, including

precision, recall, accuracy, F1-score, and Equal Error Rate (EER). We also provide visualizations of confusion matrices to interpret

model behavior.

4.1. Performance Metrics Comparison

Table 1 summarizes the performance of each model on the test dataset:

Table 1: Model Performance Comparison (Mean ± 95% CI)

Model Accuracy Precision Recall F1-Score EER

Isolation Forest 0.957 ± 0.004 0.941 ± 0.005 0.932 ± 0.006 0.936 ± 0.005 0.045 ± 0.003

One-Class SVM 0.924 ± 0.006 0.912 ± 0.007 0.903 ± 0.008 0.907 ± 0.007 0.078 ± 0.005

Autoencoder 0.968 ± 0.003 0.956 ± 0.004 0.951 ± 0.004 0.953 ± 0.004 0.033 ± 0.002

Interpretation

 The Autoencoder achieved 96.8% accuracy,

outperforming traditional methods reported in similar

studies [8, 10]. This aligns with recent trends showing

deep learning superiority in complex anomaly detection

tasks [4].

 The Autoencoder achieved the highest accuracy

(96.8%), precision (95.6%), and recall (95.1%), with the

lowest EER (3.3%), indicating superior anomaly

detection capability.

 Isolation Forest performed well with balanced precision

and recall, making it suitable for real-time detection

where computational efficiency is prioritized.

 One-Class SVM showed lower performance metrics,

likely due to its sensitivity to feature scaling and kernel

selection in high-dimensional data.

4.2. Confusion Matrices

Below are the confusion matrices for each model (normalized

to percentage):

1. Isolation Forest:

2. One-Class SVM:

3. Autoencoder:

4.3. ROC Curves and AUC Scores

 Isolation Forest: AUC = 0.971

 One-Class SVM: AUC = 0.934

 Autoencoder: AUC = 0.985

The Autoencoder demonstrated the highest Area Under the

Curve (AUC), confirming its robustness in distinguishing

between normal and anomalous traffic.

4.4. Computational Performance

Table 2: Training and Inference Times

Model Training Time (s) Inference Time per

Sample (ms)

Isolation Forest 142 0.8

One-Class SVM 310 1.5

Autoencoder 520 2.1

Trade-off Analysis:

While the Autoencoder provides the highest detection

accuracy, it requires longer training and inference times.

Isolation Forest offers the best balance between speed and

performance for real-time cloud IDS applications.

5. AWS-Specific Deployment Architecture

We deployed the model using Amazon SageMaker [9], which

provides managed machine learning services. Integration with

AWS Security Hub [5] enabled centralized security

monitoring. To operationalize the IDS in AWS, we propose

the following cloud-native architecture:

5.1. System Architecture on AWS

[CloudTrail + VPC Flow Logs] → [Amazon S3] → [AWS La

mbda (Preprocessing)]

 → [Amazon SageMaker (Model Serving)] → [Amazon

CloudWatch (Alerts)]

 → [AWS WAF / Security Groups (Response)]

5.2. Implementation Components

1. Data Collection:

 Use Amazon CloudTrail for API logging and VPC Flow

Logs for network traffic.

IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 45

 Stream logs to Amazon S3 via Kinesis Data Firehose.

2. Preprocessing & Feature Extraction:

 Deploy AWS Lambda functions triggered by new S3

uploads to preprocess data.

 Use Pandas and NumPy in Lambda layers for feature

engineering.

3. Model Serving:

 Deploy the trained Autoencoder model as an endpoint

using Amazon SageMaker.

 Use SageMaker's built-in Scikit-learn and TensorFlow

containers.

4. Anomaly Response:

 Integrate with AWS WAF to automatically block

malicious IPs.

 Use Amazon SNS to send alerts to security teams via

email/SMS.

 Implement automated response via AWS Systems

Manager Automation.

5. Monitoring & Dashboard:

 Visualize detection metrics using Amazon CloudWatch

Dashboards.

 Log all incidents in Amazon Security Hub for

compliance reporting.

5.3. Cost Optimization Considerations

 Use SageMaker Serverless Inference for sporadic traffic

patterns.

 Implement S3 Lifecycle Policies to archive old logs to

Glacier.

 Use Spot Instances for training large models.

6. Discussion

6.1. Model Selection for AWS Deployment

Given the results, we recommend:

 Primary Model: Autoencoder for high-security

environments where detection accuracy is critical.

 Fallback Model: Isolation Forest for real-time

monitoring with budget constraints.

 Hybrid Approach: Ensemble method combining both

models to reduce false positives.

6.2. Integration with AWS Native Security

Services

Our IDS complements existing AWS services:

 Amazon GuardDuty: Our ML model provides additional

behavioral analytics beyond GuardDuty's threat

intelligence.

 AWS Security Hub: Results can be formatted as ASFF

(Amazon Security Finding Format) for centralized

reporting.

 AWS IAM Analyzer: Correlate anomalous network

patterns with permission anomalies.

6.3. Scalability and Elasticity

The serverless design ensures:

 Auto-scaling via Lambda and SageMaker endpoints.

 Multi-region deployment using AWS CloudFormation

templates.

 Cost-effectiveness through pay-per-use pricing.

7. Conclusion

Our findings contribute to the growing body of research on

ML-based cloud security [5, 10]. Future work should explore

federated learning approaches to address data privacy

concerns in multi-tenant environments [9]. This research

successfully implemented and evaluated a machine learning-

based IDS for cloud environments, with specific applicability

to AWS. Key achievements include:

 High Detection Accuracy: The Autoencoder model

achieved 96.8% accuracy with 3.3% EER on the CSE-

CIC-IDS2018 dataset.

 AWS-Ready Architecture: Proposed a scalable,

serverless deployment pipeline using native AWS

services.

 Practical Implementation: Provided complete

implementation details from data preprocessing to

automated response.

8. Limitations
 Dataset may not fully represent all AWS-specific attack

patterns.

 Model performance depends on feature engineering

quality.

 Real-time deployment requires careful tuning of

thresholds to minimize false positives.

9. Future Work

 Implement federated learning across multiple AWS

accounts for improved model generalization.

 Integrate natural language processing for log analysis

alongside network traffic.

 Develop explainable AI (XAI) components to help

analysts understand detection decisions.

 Create pre-built AWS CloudFormation templates for

one-click IDS deployment.

10 . References

1. Canadian Institute for Cybersecurity. (2018). CSE-

CIC-IDS2018 Dataset. University of New

Brunswick. https://www.unb.ca/cic/datasets/ids-

2018.html

2. Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008).

Isolation Forest. In 2008 Eighth IEEE International

Conference on Data Mining (pp. 413-422). IEEE.

https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html

IKR Publishers

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 46

3. Schölkopf, B., Williamson, R. C., Smola, A. J.,

Shawe-Taylor, J., & Platt, J. C. (1999). Support vector

method for novelty detection. Advances in Neural

Information Processing Systems, 12.

4. Hinton, G. E., & Salakhutdinov, R. R. (2006).

Reducing the dimensionality of data with neural

networks. Science, 313(5786), 504-507.

5. Amazon Web Services. (2023). AWS Security

Documentation. https://docs.aws.amazon.com/security/

6. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,

V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011).

Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12, 2825-2830.

7. Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,

Chen, Z., Citro, C., ... & Zheng, X. (2016).

TensorFlow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint

arXiv:1603.04467.

8. Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A.

(2018). Toward generating a new intrusion detection

dataset and intrusion traffic characterization. ICISSp,

1, 108-116.

9. AWS. (2023). Amazon SageMaker Developer

Guide. https://docs.aws.amazon.com/sagemaker/

10. Chandola, V., Banerjee, A., & Kumar, V. (2009).

Anomaly detection: A survey. ACM Computing

Surveys (CSUR), 41(3), 1-58.

https://docs.aws.amazon.com/security/
https://docs.aws.amazon.com/sagemaker/

