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Intrusion Detection Systems (IDS) are critical for maintaining security in cloud 

computing environments, where dynamic infrastructure and multi-tenancy present 

unique challenges. This research implements and evaluates a machine learning-based 

IDS specifically designed for Amazon Web Services (AWS) environments using the 

CSE-CIC-IDS2018 dataset. Three machine learning algorithms—Isolation Forest, 

One-Class Support Vector Machine (SVM), and Autoencoder neural networks—were 

systematically compared based on standard performance metrics including accuracy, 

precision, recall, F1-score, and Equal Error Rate (EER). The Autoencoder model 

demonstrated superior performance with 96.8% accuracy and 3.3% EER, significantly 

outperforming traditional methods. Furthermore, we propose a comprehensive AWS-

native deployment architecture that integrates the trained models with cloud services 

including Amazon SageMaker, Lambda, CloudTrail, and Security Hub, creating a 

scalable, serverless IDS solution capable of real-time threat detection and automated 

response. This study contributes to the field of cloud security by providing both 

empirical validation of machine learning approaches for anomaly detection and 

practical implementation guidelines for AWS environments. 
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1. Introduction to Anomaly Detection 

(IDS) in Cloud Security 

Anomaly detection is essential for securing cloud 

environments as organizations migrate critical workloads. 

While traditional IDS solutions exist, they often lack cloud-

native integration, scalability, and real-time adaptability. This 

study addresses these gaps by proposing a novel, AWS-native 

IDS that leverages machine learning within a serverless 

architecture, providing automated detection and response 

capabilities not fully realized in prior works. 

1.1. Significance of Anomaly Detection in Cloud 

Security 

Early Threat Detection: Enables prompt response to security 

threats [5], allowing organizations to respond promptly and  

 

mitigate risks before they escalate. Protection of Sensitive 

Data: With the proliferation of sensitive data stored and 

processed in the cloud, anomaly detection helps safeguard 

against unauthorized access, data breaches, and leakage of 

confidential information. Maintaining Service Availability: 

By detecting anomalous activities that may indicate attempts 

to disrupt services or launch denial-of-service (DoS) attacks, 

IDS systems contribute to maintaining the availability and 

reliability of cloud services. Compliance and Regulatory 

Requirements: Compliance with industry regulations and data 

protection laws is paramount for organizations operating in 

the cloud. Anomaly detection assists in meeting compliance 

requirements by ensuring adherence to security standards and 

protocols. 

Significance of Anomaly Detection in Cloud Security cabe 

summarized in the following:  
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 Early Threat Detection: Enables prompt response to 

security threats [5]. 

 Data Protection: Safeguards against unauthorized 

access and breaches. 

 Service Availability: Maintains reliability by detecting 

DoS attempts. 

 Regulatory Compliance: Helps meet security standards 

and protocols. 
 

1.2. Common Threats and Attacks in Cloud 

Computing Environments 

 Data Breaches 

 Malware Infections 

 Insider Threats 

 Denial-of-Service (DoS) Attacks 

 Credential Theft 

 Man-in-the-Middle (MitM) Attacks 

 Evasion Techniques 
 

1.3. Dataset Explanation: CSE-CIC-IDS2018 

While the CSE-CIC-IDS2018 dataset [1,8] is not AWS-

specific, it provides a comprehensive benchmark for intrusion 

detection research. To address AWS-specificity, we extended 

the dataset simulation by mapping features to AWS-native 

log sources (VPC Flow Logs, CloudTrail) in our deployment 

architecture. 

 

The CSE-CIC-IDS2018 dataset is a comprehensive and widely used dataset in the field of cybersecurity, specifically for evaluating 

intrusion detection systems (IDS)[1,8]. It was created by the Canadian Institute for Cybersecurity (CIC) to facilitate research and 

development in the detection and mitigation of cyber threats. Here's a detailed description of the dataset: 

 
 

1.3.1. Structure 

The dataset is typically provided in CSV (Comma Separated 

Values) format, making it easily accessible and compatible 

with various data analysis tools and platforms. It consists of a 

large number of features (columns) representing different 

attributes and characteristics of network traffic and system 

activities. These features include but are not limited to: 

 Source and destination IP addresses 

 Protocol type (e.g., TCP, UDP) 

 Packet size and timing information 

 Network flow statistics 

 Payload characteristics 

 Attack labels indicating whether a network flow is 

benign or malicious 
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Each row in the dataset represents an individual network flow 

or communication session captured during a specific time 

period. The dataset typically contains a significant number of 

instances, providing a diverse and representative sample of 

network traffic. 

1.3.2. Characteristics 
 

1. The CSE-CIC-IDS2018 dataset is characterized by its 

large-scale nature, containing millions of network flow 

instances captured from diverse network environments. 

2. The dataset is derived from real-world network traffic 

captured from operational networks, ensuring its 

relevance and authenticity for evaluating IDS systems in 

practical settings. 

3. Like many real-world datasets, the CSE-CIC-IDS2018 

dataset exhibits class imbalance, with a larger number of 

benign instances compared to malicious instances. This 

imbalance presents challenges for machine learning 

algorithms in effectively distinguishing between normal 

and anomalous network behavior [8]. 

4. The dataset covers a wide range of cyber attacks and 

intrusion scenarios, including but not limited to denial-of-

service (DoS), distributed denial-of-service (DDoS), 

malware infections, SQL injections, and reconnaissance 

activities. 

5. Each instance in the dataset is labeled with a ground truth 

indicating whether it represents normal (benign) network 

behavior or malicious activity. These labels are 

instrumental for supervised learning approaches in 

training and evaluating IDS models. 
 

1.4. Statement of the Problem 
 

Cloud computing environments face unique security 

challenges due to their dynamic, scalable, and multi-tenant 

nature. Traditional intrusion detection systems (IDS) are 

often ill-suited for cloud infrastructures, as they struggle to 

handle the scale, complexity, and real-time demands of cloud 

networks. Key issues include: 

 Inability to efficiently process large volumes of network 

traffic and system logs in real-time. 

 Lack of adaptability to dynamic cloud features such as 

elastic scaling, virtualization, and diverse network 

topologies. 

 High rates of false positives and false negatives, which 

undermine detection reliability. 

 Limited integration with cloud-native platforms and 

security frameworks. 

 Absence of scalable, automated response mechanisms 

tailored for cloud environments. 

Consequently, there is a pressing need for an adaptive, 

scalable, and cloud-native IDS capable of detecting and 

mitigating cyber threats, such as unauthorized access, data 

breaches, and denial-of-service attacks, in real time, while 

minimizing operational overhead and maximizing detection 

accuracy. 

1.5. Objectives 

The primary aim of this research is to design, implement, and 

evaluate a machine learning-based Intrusion Detection 

System (IDS) specifically optimized for cloud computing 

environments. The study seeks to achieve the following 

objectives: 

 Develop an AWS-native, scalable IDS using ML. 

 Compare models with statistical validation. 

 Deploy a serverless, real-time detection pipeline. 

 Ensure reproducibility and practical implementation. 

 

2. Methodology/ System Model 

The proposed Intrusion Detection System (IDS) for cloud 

security is designed to effectively detect and mitigate various 

cyber threats and attacks in real-time. The system model 

comprises several components, including data collection, 

preprocessing, feature extraction, anomaly detection, and 

response mechanisms. Below is an analysis of the proposed 

IDS system, including block diagrams, flowcharts, and 

algorithms used [8]. 

3. Data Collection 
 

3.1. Preprocessing 
 

Block Diagram: The data collection module gathers network 

traffic data, system logs, and other relevant information from 

cloud environments. This includes data from network 

devices, virtual machines, containers, and application logs. 

Flowchart: The flowchart illustrates the process of collecting 

raw data from various sources, including network sensors, 

host-based agents, and log files. Data collection methods may 

include packet sniffing, NetFlow analysis, log scraping, and 

API integration. 

 
Block Diagram: The preprocessing module cleanses, 

normalizes, and preprocesses the raw data to prepare it for 

analysis. This includes data cleaning, missing value 

imputation, feature scaling, and transformation. 
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Flowchart: The flowchart depicts the steps involved in 

preprocessing the data, such as removing outliers, handling 

missing values, encoding categorical variables, and 

standardizing numerical features. 

3.2.  Feature Extraction 

Block Diagram: The feature extraction module extracts 

relevant features from the preprocessed data to represent 

network behavior and system activities. This may include 

statistical features, traffic patterns, protocol-specific 

attributes, and temporal characteristics. 

Flowchart: The flowchart outlines the process of feature 

extraction, which involves selecting informative features, 

reducing dimensionality, and generating feature vectors for 

input to the anomaly detection algorithms. 

3.3.  Anomaly Detection 

For anomaly detection, we implemented three machine 

learning approaches: Isolation Forest [2], One-Class SVM 

[3], and Autoencoder neural networks [4]. These models were 

selected based on their proven effectiveness in anomaly 

detection literature [10]. 

Block Diagram: The anomaly detection module applies 

machine learning algorithms and anomaly detection 

techniques to identify deviations from normal behavior. This 

includes supervised, unsupervised, and semi-supervised 

learning approaches such as Isolation Forest, One-Class 

SVM, and Autoencoder-based methods. 

Flowchart: The flowchart illustrates the workflow of the 

anomaly detection process, including model training, 

anomaly scoring, thresholding, and decision-making. 

Anomalies detected beyond a certain threshold are flagged as 

potential security incidents. 

3.4.  Response Mechanisms 

Block Diagram: The response mechanisms module 

implements response actions based on the severity and type 

of detected anomalies. This may include alerting system 

administrators, blocking suspicious traffic, quarantining 

compromised hosts, and updating firewall rules. 

Flowchart: The flowchart depicts the steps involved in 

responding to detected anomalies, including alert generation, 

incident triage, mitigation strategies, and incident reporting. 

3.5. Simulation/Implementation 

The models were trained using scikit-learn [6] and 

TensorFlow [7] libraries. Hyperparameter tuning employed 

grid search cross-validation, a standard optimization 

technique [6]. 

The IDS system was implemented using Python 

programming language along with popular machine learning 

libraries such as scikit-learn, TensorFlow, and Keras. The 

implementation involved several stages, including data 

preprocessing, model training, evaluation, and deployment. 

Below are the details on how the IDS system was 

implemented or simulated using the selected machine 

learning models. 

3.6. Data Preprocessing 

The raw network traffic data from the CSE-CIC-IDS2018 

dataset was preprocessed to handle missing values, normalize 

numerical features, and encode categorical variables. 

Techniques such as Min-Max scaling, Standard scaling, and 

One-Hot encoding were applied to preprocess the data and 

prepare it for model training. 

Model Selection 

 



IKR Publishers  

 

© IKR Journal of Engineering and Technology (IKRJET). Published by IKR Publishers Page 42 

 

Several machine learning models were considered for anomaly detection, including Isolation Forest, One-Class SVM, and 

Autoencoder-based neural networks. 

Each model's suitability for the IDS task was evaluated based on factors such as scalability, interpretability, and detection 

performance. 

Model Training 

 
The selected machine learning models were trained on the preprocessed data using appropriate training algorithms and 

hyperparameters. 

Cross-validation techniques such as k-fold cross-validation were employed to ensure robust model training and performance 

estimation. 

Evaluation Metrics 

 
Performance metrics such as accuracy, precision, recall, F1-score, and the Equal Error Rate (EER) were used to evaluate the 

effectiveness of the IDS system. 

Confusion matrices and ROC curves were also utilized to assess model behavior and detection capabilities. 
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Hyperparameter Tuning 

Hyperparameters of the machine learning models were fine-tuned using techniques like grid search or random search to optimize 

performance. Grid search cross-validation was employed to find the best combination of hyperparameters for each model. 

 

Model Evaluation 

The trained models were evaluated on a separate test dataset to assess their generalization performance and robustness. 

Performance metrics were calculated on the test set to measure the models' ability to detect anomalies accurately and minimize false 

positives. 

 

Deployment 

Once the models were trained and evaluated satisfactorily, they were deployed in a real-world cloud environment or simulated 

environment for continuous monitoring and threat detection.The deployment phase involved integrating the trained models with 

existing security infrastructure and establishing alerting and response mechanisms. 
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4. Results and Analysis 

In this section, we present a comparative analysis of different machine learning models based on performance metrics, including 

precision, recall, accuracy, F1-score, and Equal Error Rate (EER). We also provide visualizations of confusion matrices to interpret 

model behavior. 

4.1. Performance Metrics Comparison 

Table 1 summarizes the performance of each model on the test dataset: 

Table 1: Model Performance Comparison (Mean ± 95% CI) 

Model Accuracy Precision Recall F1-Score EER 

Isolation Forest 0.957 ± 0.004 0.941 ± 0.005 0.932 ± 0.006 0.936 ± 0.005 0.045 ± 0.003 

One-Class SVM 0.924 ± 0.006 0.912 ± 0.007 0.903 ± 0.008 0.907 ± 0.007 0.078 ± 0.005 

Autoencoder 0.968 ± 0.003 0.956 ± 0.004 0.951 ± 0.004 0.953 ± 0.004 0.033 ± 0.002 

Interpretation 

 The Autoencoder achieved 96.8% accuracy, 

outperforming traditional methods reported in similar 

studies [8, 10]. This aligns with recent trends showing 

deep learning superiority in complex anomaly detection 

tasks [4]. 

 The Autoencoder achieved the highest accuracy 

(96.8%), precision (95.6%), and recall (95.1%), with the 

lowest EER (3.3%), indicating superior anomaly 

detection capability. 

 Isolation Forest performed well with balanced precision 

and recall, making it suitable for real-time detection 

where computational efficiency is prioritized. 

 One-Class SVM showed lower performance metrics, 

likely due to its sensitivity to feature scaling and kernel 

selection in high-dimensional data. 
 

4.2. Confusion Matrices 
 

Below are the confusion matrices for each model (normalized 

to percentage): 

1. Isolation Forest: 

 

2. One-Class SVM: 

 

3. Autoencoder: 

 

4.3. ROC Curves and AUC Scores 
 

 Isolation Forest: AUC = 0.971 

 One-Class SVM: AUC = 0.934 

 Autoencoder: AUC = 0.985 

The Autoencoder demonstrated the highest Area Under the 

Curve (AUC), confirming its robustness in distinguishing 

between normal and anomalous traffic. 

4.4. Computational Performance 

Table 2: Training and Inference Times 

Model Training Time (s) Inference Time per 

Sample (ms) 

Isolation Forest 142 0.8 

One-Class SVM 310 1.5 

Autoencoder 520 2.1 

Trade-off Analysis: 

While the Autoencoder provides the highest detection 

accuracy, it requires longer training and inference times. 

Isolation Forest offers the best balance between speed and 

performance for real-time cloud IDS applications. 

5. AWS-Specific Deployment Architecture 

We deployed the model using Amazon SageMaker [9], which 

provides managed machine learning services. Integration with 

AWS Security Hub [5] enabled centralized security 

monitoring. To operationalize the IDS in AWS, we propose 

the following cloud-native architecture: 

5.1. System Architecture on AWS 

[CloudTrail + VPC Flow Logs] → [Amazon S3] → [AWS La

mbda (Preprocessing)]  

       → [Amazon SageMaker (Model Serving)] → [Amazon 

CloudWatch (Alerts)]  

       → [AWS WAF / Security Groups (Response)] 

5.2. Implementation Components 
 

1. Data Collection: 

 Use Amazon CloudTrail for API logging and VPC Flow 

Logs for network traffic. 
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 Stream logs to Amazon S3 via Kinesis Data Firehose. 

2. Preprocessing & Feature Extraction: 

 Deploy AWS Lambda functions triggered by new S3 

uploads to preprocess data. 

 Use Pandas and NumPy in Lambda layers for feature 

engineering. 

3. Model Serving: 

 Deploy the trained Autoencoder model as an endpoint 

using Amazon SageMaker. 

 Use SageMaker's built-in Scikit-learn and TensorFlow 

containers. 

4. Anomaly Response: 

 Integrate with AWS WAF to automatically block 

malicious IPs. 

 Use Amazon SNS to send alerts to security teams via 

email/SMS. 

 Implement automated response via AWS Systems 

Manager Automation. 

5. Monitoring & Dashboard: 

 Visualize detection metrics using Amazon CloudWatch 

Dashboards. 

 Log all incidents in Amazon Security Hub for 

compliance reporting. 
 

5.3. Cost Optimization Considerations 
 

 Use SageMaker Serverless Inference for sporadic traffic 

patterns. 

 Implement S3 Lifecycle Policies to archive old logs to 

Glacier. 

 Use Spot Instances for training large models. 
 

6. Discussion 
 

6.1. Model Selection for AWS Deployment 

Given the results, we recommend: 

 Primary Model: Autoencoder for high-security 

environments where detection accuracy is critical. 

 Fallback Model: Isolation Forest for real-time 

monitoring with budget constraints. 

 Hybrid Approach: Ensemble method combining both 

models to reduce false positives. 
 

6.2. Integration with AWS Native Security 

Services 
 

Our IDS complements existing AWS services: 

 Amazon GuardDuty: Our ML model provides additional 

behavioral analytics beyond GuardDuty's threat 

intelligence. 

 AWS Security Hub: Results can be formatted as ASFF 

(Amazon Security Finding Format) for centralized 

reporting. 

 AWS IAM Analyzer: Correlate anomalous network 

patterns with permission anomalies. 
 

6.3. Scalability and Elasticity 
 

The serverless design ensures: 

 Auto-scaling via Lambda and SageMaker endpoints. 

 Multi-region deployment using AWS CloudFormation 

templates. 

 Cost-effectiveness through pay-per-use pricing. 

 

7. Conclusion 

Our findings contribute to the growing body of research on 

ML-based cloud security [5, 10]. Future work should explore 

federated learning approaches to address data privacy 

concerns in multi-tenant environments [9]. This research 

successfully implemented and evaluated a machine learning-

based IDS for cloud environments, with specific applicability 

to AWS. Key achievements include: 

 High Detection Accuracy: The Autoencoder model 

achieved 96.8% accuracy with 3.3% EER on the CSE-

CIC-IDS2018 dataset. 

 AWS-Ready Architecture: Proposed a scalable, 

serverless deployment pipeline using native AWS 

services. 

 Practical Implementation: Provided complete 

implementation details from data preprocessing to 

automated response. 

 

8. Limitations 
 Dataset may not fully represent all AWS-specific attack 

patterns. 

 Model performance depends on feature engineering 

quality. 

 Real-time deployment requires careful tuning of 

thresholds to minimize false positives. 

 

9. Future Work 

 Implement federated learning across multiple AWS 

accounts for improved model generalization. 

 Integrate natural language processing for log analysis 

alongside network traffic. 

 Develop explainable AI (XAI) components to help 

analysts understand detection decisions. 

 Create pre-built AWS CloudFormation templates for 

one-click IDS deployment. 
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